Learning Decision Ensemble using a Graph Neural Network for Comorbidity
Aware Chest Radiograph Screening
- URL: http://arxiv.org/abs/2004.11721v1
- Date: Fri, 24 Apr 2020 12:57:50 GMT
- Title: Learning Decision Ensemble using a Graph Neural Network for Comorbidity
Aware Chest Radiograph Screening
- Authors: Arunava Chakravarty, Tandra Sarkar, Nirmalya Ghosh, Ramanathan
Sethuraman, Debdoot Sheet
- Abstract summary: Machine learning based automated solutions are being developed to reduce the burden of routine screening on Radiologists.
We propose a Graph Neural Network (GNN) based solution to obtain ensemble predictions which models the dependencies between different diseases.
- Score: 4.9178119168798045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest radiographs are primarily employed for the screening of cardio,
thoracic and pulmonary conditions. Machine learning based automated solutions
are being developed to reduce the burden of routine screening on Radiologists,
allowing them to focus on critical cases. While recent efforts demonstrate the
use of ensemble of deep convolutional neural networks(CNN), they do not take
disease comorbidity into consideration, thus lowering their screening
performance. To address this issue, we propose a Graph Neural Network (GNN)
based solution to obtain ensemble predictions which models the dependencies
between different diseases. A comprehensive evaluation of the proposed method
demonstrated its potential by improving the performance over standard
ensembling technique across a wide range of ensemble constructions. The best
performance was achieved using the GNN ensemble of DenseNet121 with an average
AUC of 0.821 across thirteen disease comorbidities.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Breast Cancer Image Classification Method Based on Deep Transfer Learning [40.392772795903795]
A breast cancer image classification model algorithm combining deep learning and transfer learning is proposed.
Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0% in the test set, with a significantly improved classification accuracy compared to previous models.
arXiv Detail & Related papers (2024-04-14T12:09:47Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Pneumonia Detection in Chest X-Rays using Neural Networks [0.6639684533393106]
We have proposed the CNN model for the classification of Chest X-ray images for Radiological Society of North America Pneumonia datasets.
The proposed method is based on a non-complex CNN and the use of transfer learning algorithms like Xception, InceptionV3/V4, EfficientNetB7.
arXiv Detail & Related papers (2022-04-07T17:39:12Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
A novel approach is proposed to automatically diagnose the COVID-19 by the utilization of Electrocardiogram (ECG) data with the integration of deep learning algorithms.
CNN models have been utilized in this proposed framework, including VGG16, VGG19, InceptionResnetv2, InceptionV3, Resnet50, and Densenet201.
Our results show a relatively low accuracy in the rest of the models compared to the VGG16 model, which is due to the small size of the utilized dataset.
arXiv Detail & Related papers (2021-12-15T08:06:45Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images [10.01138352319106]
Five different deep learning models (ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their Ensemble have been used in this paper to classify COVID-19, pneumoniae and healthy subjects using Chest X-Ray images.
The mean Micro-F1 score of the models for COVID-19 classifications ranges from 0.66 to 0.875, and is 0.89 for the Ensemble of the network models.
arXiv Detail & Related papers (2020-06-03T22:55:53Z) - A Systematic Search over Deep Convolutional Neural Network Architectures
for Screening Chest Radiographs [4.6411273009803065]
Chest radiographs are used for the screening of pulmonary and cardio-/thoracic conditions.
Recent efforts demonstrate a performance benchmark using an ensemble of deep convolutional neural networks (CNN)
Our systematic search over multiple standard CNN architectures identified single candidate models whose classification performances were found to be at par with ensembles.
arXiv Detail & Related papers (2020-04-24T12:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.