論文の概要: Robust subgaussian estimation with VC-dimension
- arxiv url: http://arxiv.org/abs/2004.11734v3
- Date: Wed, 8 Jul 2020 16:16:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 03:06:50.316684
- Title: Robust subgaussian estimation with VC-dimension
- Title(参考訳): VC次元によるロバスト部分ガウス推定
- Authors: Jules Depersin
- Abstract要約: この研究は、MOM推定器の余剰リスクを束縛する新しい一般的な方法を提案する。
中心となる技術は、統計複雑性を測定するためにVC次元(ラデマッハの複雑さの代わりに)を用いることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Median-of-means (MOM) based procedures provide non-asymptotic and strong
deviation bounds even when data are heavy-tailed and/or corrupted. This work
proposes a new general way to bound the excess risk for MOM estimators. The
core technique is the use of VC-dimension (instead of Rademacher complexity) to
measure the statistical complexity. In particular, this allows to give the
first robust estimators for sparse estimation which achieves the so-called
subgaussian rate only assuming a finite second moment for the uncorrupted data.
By comparison, previous works using Rademacher complexities required a number
of finite moments that grows logarithmically with the dimension. With this
technique, we derive new robust sugaussian bounds for mean estimation in any
norm. We also derive a new robust estimator for covariance estimation that is
the first to achieve subgaussian bounds without $L_4-L_2$ norm equivalence.
- Abstract(参考訳): 中央値法(英語版)(mom)に基づく手続きは、データが重み付きまたは破損している場合でも非漸近的かつ強い偏差境界を提供する。
この研究は、MOM推定器の余剰リスクを束縛する新しい一般的な方法を提案する。
中心となる技術は、統計複雑性を測定するためにVC次元(ラデマッハの複雑さの代わりに)を用いることである。
特に、これはスパース推定のための最初のロバストな推定子を与えることができ、これはいわゆる準ガウジアンレートを、分解されていないデータに対して有限秒のモーメントを仮定するだけで達成する。
対照的に、ラデマッハ複素数を用いた以前の研究は、次元と対数的に成長する多くの有限モーメントを必要とした。
この手法により、任意のノルムにおける平均推定のための新しいロバストなスガウス境界を導出する。
また、L_4-L_2$ノルム同値性のない亜ガウス境界を初めて達成した共分散推定のための新しいロバストな推定器も導出する。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
Intractable Likelihoods [0.8287206589886881]
SNPE法は,難解な確率でシミュレーションベースモデルを扱うために提案される。
本稿では,ネスト予測を推定するためのネスト推定APT手法を提案する。
損失関数と勾配のネスト推定器は偏りがあるため,不偏のマルチレベルモンテカルロ推定器(MLMC)を用いる。
論文 参考訳(メタデータ) (2024-01-30T06:29:41Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Stochastic regularized majorization-minimization with weakly convex and
multi-convex surrogates [0.0]
提案アルゴリズムの最初の最適性ギャップは,非テンソル依存データ設定下での様々な手法の期待損失率で減衰することを示す。
非テンション依存データ設定の下で, 各種手法の収束点を求める。
論文 参考訳(メタデータ) (2022-01-05T15:17:35Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Robust Algorithms for GMM Estimation: A Finite Sample Viewpoint [30.839245814393724]
モーメントの一般化法(GMM)
我々はGMM推定器を開発し、一定の$ell$リカバリ保証を$O(sqrtepsilon)$で許容する。
我々のアルゴリズムと仮定は、機器変数の線形回帰とロジスティック回帰に適用できる。
論文 参考訳(メタデータ) (2021-10-06T21:06:22Z) - Model-based multi-parameter mapping [0.0]
定量的MRイメージングは、よりリッチな情報の内容と標準化された測定基準のためにますます好まれている。
推定はしばしば、異なる量のデータを分離して解くために、データのノイズサブセットを仮定する。
代わりに、生成モデルは定式化され、パラメータ推定を共同で回復するために反転することができる。
論文 参考訳(メタデータ) (2021-02-02T17:00:11Z) - Outlier Robust Mean Estimation with Subgaussian Rates via Stability [46.03021473600576]
本研究では,ロバストなアウトリール高次元平均推定問題について検討する。
外乱平均推定のために, ガウス平均を用いた第1次計算効率を得る。
論文 参考訳(メタデータ) (2020-07-30T17:33:03Z) - Robust Compressed Sensing using Generative Models [98.64228459705859]
本稿では,Median-of-Means (MOM) にヒントを得たアルゴリズムを提案する。
我々のアルゴリズムは、外れ値が存在する場合でも、重み付きデータの回復を保証する。
論文 参考訳(メタデータ) (2020-06-16T19:07:41Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
最寄りの$gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
本手法は既存の不一致対策よりも高いロバスト性を実現する。
論文 参考訳(メタデータ) (2020-06-13T06:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。