論文の概要: Distantly-Supervised Neural Relation Extraction with Side Information
using BERT
- arxiv url: http://arxiv.org/abs/2004.14443v3
- Date: Thu, 10 Sep 2020 20:30:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 13:17:50.120885
- Title: Distantly-Supervised Neural Relation Extraction with Side Information
using BERT
- Title(参考訳): BERTを用いた側情報を用いた遠距離スーパービジョンニューラルリレーション抽出
- Authors: Johny Moreira, Chaina Oliveira, David Mac\^edo, Cleber Zanchettin,
Luciano Barbosa
- Abstract要約: 関係抽出(Relation extract、RE)は、文内のエンティティ間の関係を分類する。
この戦略を採用する方法の1つはRESIDEモデルであり、知識ベースからの側情報を用いた遠方の教師付きニューラルネットワーク抽出を提案する。
本稿では,この手法が最先端のベースラインより優れていることを考慮し,追加の側情報を用いたRESIDE関連手法を提案するが,BERT埋め込みによる文エンコーディングを簡略化する。
- 参考スコア(独自算出の注目度): 2.0946724304757955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation extraction (RE) consists in categorizing the relationship between
entities in a sentence. A recent paradigm to develop relation extractors is
Distant Supervision (DS), which allows the automatic creation of new datasets
by taking an alignment between a text corpus and a Knowledge Base (KB). KBs can
sometimes also provide additional information to the RE task. One of the
methods that adopt this strategy is the RESIDE model, which proposes a
distantly-supervised neural relation extraction using side information from
KBs. Considering that this method outperformed state-of-the-art baselines, in
this paper, we propose a related approach to RESIDE also using additional side
information, but simplifying the sentence encoding with BERT embeddings.
Through experiments, we show the effectiveness of the proposed method in Google
Distant Supervision and Riedel datasets concerning the BGWA and RESIDE baseline
methods. Although Area Under the Curve is decreased because of unbalanced
datasets, P@N results have shown that the use of BERT as sentence encoding
allows superior performance to baseline methods.
- Abstract(参考訳): 関係抽出(Relation extract、RE)は、文内のエンティティ間の関係を分類する。
関係抽出器を開発するための最近のパラダイムは、テキストコーパスと知識ベース(kb)をアライメントすることで、新しいデータセットを自動的に作成できる遠方監督(ds)である。
KBは時にREタスクに追加情報を提供することもある。
この戦略を採用する方法の1つにRESIDEモデルがあり、KBの側情報を用いた遠隔教師付きニューラルネットワーク抽出を提案する。
本稿では,この手法が最先端のベースラインより優れていることを考慮し,追加の側情報を用いたRESIDE関連手法を提案するが,BERT埋め込みによる文エンコーディングは簡単である。
実験を通じて,Google Distant Supervision と Riedel のデータセットにおいて,BGWA と RESIDE のベースライン手法に関する提案手法の有効性を示す。
不均衡データセットのため、曲線の下の領域は減少するが、p@nの結果は、文のエンコーディングとしてbertを使用することで、ベースラインメソッドのパフォーマンスが向上することを示している。
関連論文リスト
- Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z) - Simple and Effective Relation-based Embedding Propagation for Knowledge
Representation Learning [15.881121633396832]
本稿では,事前学習したグラフ埋め込みを文脈に適応させるために,Relation-based Embedding Propagation (REP)法を提案する。
我々は,REPがOGBL-WikiKG2上の三重項埋め込み法に対して10%の相対的な改善をもたらすことを示した。
最先端のGC-OTEと同等の結果を得るには5%-83%の時間を要する。
論文 参考訳(メタデータ) (2022-05-13T06:02:13Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Gradient Imitation Reinforcement Learning for Low Resource Relation
Extraction [52.63803634033647]
低リソース関係抽出(LRE)は,人間のアノテーションが不足している場合に,ラベル付きコーパスから関係事実を抽出することを目的としている。
我々は、擬似ラベルデータにラベル付きデータへの勾配降下方向を模倣するように促すグラディエント・イミテーション強化学習法を開発した。
また,低リソース関係抽出における2つの主要なシナリオを扱うGradLREというフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-14T03:51:15Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Improving BERT Model Using Contrastive Learning for Biomedical Relation
Extraction [13.354066085659198]
対比学習は、テキストデータの一般的なデータ拡張方法が不足しているため、自然言語処理では広く利用されていない。
本研究では, 対比学習を用いてBERTモデルからのテキスト表現を改善し, 関係抽出を行う手法を検討する。
3つの関係抽出ベンチマークデータセットの実験結果から,本手法がBERTモデル表現を改善し,最新性能を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-28T17:50:24Z) - Improving Distantly-Supervised Relation Extraction through BERT-based
Label & Instance Embeddings [2.88848244747161]
遠隔制御型変換器を用いたRE法であるREDSandTを提案する。
BERTの事前学習モデルとラベルとエンティティの関係をそれぞれ活用する。
NYT-10データセットの実験によると、REDSandTは信頼性の高いより広い関係をキャプチャする。
論文 参考訳(メタデータ) (2021-02-01T20:50:24Z) - Named Entity Recognition and Relation Extraction using Enhanced Table
Filling by Contextualized Representations [14.614028420899409]
提案手法は,複雑な手作り特徴やニューラルネットワークアーキテクチャを伴わずに,エンティティ参照と長距離依存関係の表現を計算する。
我々はまた、歴史に基づく予測や検索戦略に頼ることなく、関係ラベルを一度に予測するためにテンソルドット積を適用する。
その単純さにもかかわらず、実験の結果、提案手法はCoNLL04とACE05の英語データセット上で最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-15T04:58:23Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
ケースベース推論(CBR)システムは,与えられた問題に類似した事例を検索することで,新たな問題を解決する。
本稿では,知識ベース(KB)の推論において,そのようなシステムが実現可能であることを示す。
提案手法は,KB内の類似エンティティからの推論パスを収集することにより,エンティティの属性を予測する。
論文 参考訳(メタデータ) (2020-10-07T17:48:12Z) - Hybrid Attention-Based Transformer Block Model for Distant Supervision
Relation Extraction [20.644215991166902]
DSREタスクを実行するために,マルチインスタンス学習を用いたハイブリッドアテンションベースのトランスフォーマーブロックを用いた新しいフレームワークを提案する。
提案手法は評価データセットの最先端アルゴリズムより優れている。
論文 参考訳(メタデータ) (2020-03-10T13:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。