論文の概要: Tensor optimal transport, distance between sets of measures and tensor
scaling
- arxiv url: http://arxiv.org/abs/2005.00945v2
- Date: Sat, 24 Jul 2021 22:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 12:50:32.625723
- Title: Tensor optimal transport, distance between sets of measures and tensor
scaling
- Title(参考訳): テンソル最適輸送、測度集合間の距離とテンソルスケーリング
- Authors: Shmuel Friedland
- Abstract要約: これは$d$-tensors上の線形プログラミング問題である。
このアルゴリズムは厳密な凸関数の部分最小化アルゴリズムとみなすことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the optimal transport problem for $d>2$ discrete measures. This is a
linear programming problem on $d$-tensors. It gives a way to compute a
"distance" between two sets of discrete measures. We introduce an entropic
regularization term, which gives rise to a scaling of tensors. We give a
variation of the celebrated Sinkhorn scaling algorithm. We show that this
algorithm can be viewed as a partial minimization algorithm of a strictly
convex function. Under appropriate conditions the rate of convergence is
geometric and we estimate the rate. Our results are generalizations of known
results for the classical case of two discrete measures.
- Abstract(参考訳): 離散測度$d>2$に対する最適輸送問題について検討する。
これは$d$-tensors上の線形プログラミング問題である。
これは二つの離散測度の間の「距離」を計算する方法を与える。
テンソルのスケーリングを引き起こすエントロピー正則化項を導入する。
我々は,spinhorn scalingアルゴリズムの変種について述べる。
このアルゴリズムは、厳密な凸関数の部分的最小化アルゴリズムと見なすことができる。
適切な条件下では収束率は幾何学的であり、その割合を推定する。
この結果は、2つの離散測度の古典的な場合の既知の結果の一般化である。
関連論文リスト
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Approximating Metric Magnitude of Point Sets [4.522729058300309]
計量等級は、多くの望ましい幾何学的性質を持つ点雲の「大きさ」の尺度である。
様々な数学的文脈に適応しており、最近の研究は機械学習と最適化アルゴリズムを強化することを示唆している。
本稿では, 等級問題について検討し, 効率よく近似する方法を示し, 凸最適化問題として扱うことができるが, 部分モジュラ最適化としては適用できないことを示す。
本稿では,高速に収束し精度の高い反復近似アルゴリズムと,計算をより高速に行うサブセット選択法という,2つの新しいアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-09-06T17:15:28Z) - Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
距離の新しい族、相対翻訳不変ワッサーシュタイン距離(RW_p$)を導入する。
我々は、$RW_p 距離もまた、分布変換に不変な商集合 $mathcalP_p(mathbbRn)/sim$ 上で定義される実距離測度であることを示す。
論文 参考訳(メタデータ) (2024-09-04T03:41:44Z) - Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization [38.67914746910537]
我々は,ラゲールセル推定と密度支持推定の類似性を用いて,OTマップに対して$mathcalO(t-1)$の低いバウンダリレートを証明した。
所望の速さをほぼ達成するために,サンプル数に応じて減少するエントロピー正規化スキームを設計する。
論文 参考訳(メタデータ) (2024-05-23T11:46:03Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Alternating Mahalanobis Distance Minimization for Stable and Accurate CP
Decomposition [4.847980206213335]
本稿では, テンソルの特異値とベクトルを導出するための新しい定式化を導入する。
このアルゴリズムのサブスウィープは、既知のランクの正確なCPDに対して超線形収束率を達成することができることを示す。
すると、アルゴリズムは各因子に対するマハラノビス距離を最適化するものであり、基底距離は他の因子に依存していると見なす。
論文 参考訳(メタデータ) (2022-04-14T19:56:36Z) - Minimax Optimal Quantization of Linear Models: Information-Theoretic
Limits and Efficient Algorithms [59.724977092582535]
測定から学習した線形モデルの定量化の問題を考える。
この設定の下では、ミニマックスリスクに対する情報理論の下限を導出する。
本稿では,2層ReLUニューラルネットワークに対して,提案手法と上界を拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T02:39:04Z) - A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints [8.133190610747974]
計算可能近似型アルゴリズム,すなわち乗算器の線形化近近凸法を提案する。
予備的な数値計算の結果は,提案アルゴリズムの性能を示すものである。
論文 参考訳(メタデータ) (2021-06-22T07:24:17Z) - Correcting Momentum with Second-order Information [50.992629498861724]
最適積に$O(epsilon)$epsilon点を求める非臨界最適化のための新しいアルゴリズムを開発した。
我々は、さまざまな大規模ディープラーニングベンチマークとアーキテクチャで結果を検証する。
論文 参考訳(メタデータ) (2021-03-04T19:01:20Z) - S-ADDOPT: Decentralized stochastic first-order optimization over
directed graphs [16.96562173221624]
有向ネットワークノード上に分散する関数のスムーズかつ高コストな関数の和を最小化するために,分散凸最適化を提案する。
特に,各ノードに1次オラクルを仮定するtextbftextttS-ADDOPTアルゴリズムを提案する。
崩壊するステップサイズ$mathcalO (1/k)$に対して、textbfttS-ADDOPT が$mathcalO (1/k)$ で正解に達し、その収束はネットワーク非依存であることを示す。
論文 参考訳(メタデータ) (2020-05-15T21:14:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。