論文の概要: Simulation free reliability analysis: A physics-informed deep learning
based approach
- arxiv url: http://arxiv.org/abs/2005.01302v3
- Date: Sun, 14 Jun 2020 05:22:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 01:05:11.688522
- Title: Simulation free reliability analysis: A physics-informed deep learning
based approach
- Title(参考訳): シミュレーション自由信頼性解析:物理インフォームド深層学習に基づくアプローチ
- Authors: Souvik Chakraborty
- Abstract要約: 本稿では,信頼性解析問題を解くためのシミュレーションフリーフレームワークを提案する。
第一の考え方は、問題の物理からニューラルネットワークパラメータを直接学習することである。
シミュレーションとデータ生成の必要性は完全に排除されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a simulation free framework for solving reliability
analysis problems. The method proposed is rooted in a recently developed deep
learning approach, referred to as the physics-informed neural network. The
primary idea is to learn the neural network parameters directly from the
physics of the problem. With this, the need for running simulation and
generating data is completely eliminated. Additionally, the proposed approach
also satisfies physical laws such as invariance properties and conservation
laws associated with the problem. The proposed approach is used for solving
three benchmark reliability analysis problems. Results obtained illustrates
that the proposed approach is highly accurate. Moreover, the primary bottleneck
of solving reliability analysis problems, i.e., running expensive simulations
to generate data, is eliminated with this method.
- Abstract(参考訳): 本稿では信頼性解析問題を解くためのシミュレーションフリーフレームワークを提案する。
提案手法は、物理インフォームドニューラルネットワークと呼ばれる最近開発されたディープラーニングアプローチに根ざしている。
第一の考え方は、問題の物理からニューラルネットワークパラメータを直接学習することである。
これにより、シミュレーションとデータ生成の必要性は完全に排除される。
さらに,提案手法は,問題に関連する不変性や保存則といった物理法則も満たしている。
提案手法は3つのベンチマーク信頼性解析問題を解くために用いられる。
その結果,提案手法は精度が高いことが示された。
さらに,信頼性解析問題,すなわちデータ生成のための高価なシミュレーションを実行する際のボトルネックを,この方法で解消する。
関連論文リスト
- Harnessing physics-informed operators for high-dimensional reliability analysis problems [0.8192907805418583]
信頼性分析(Reliability analysis)は、特に多数のパラメータを持つシステムにおいて、非常に難しいタスクである。
信頼性を定量化するための従来の手法は、しばしば広範なシミュレーションや実験データに依存している。
物理インフォームド演算子は,高次元信頼性解析問題を妥当な精度でシームレスに解くことができることを示す。
論文 参考訳(メタデータ) (2024-09-07T04:52:03Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - MAntRA: A framework for model agnostic reliability analysis [0.0]
時間依存型信頼性解析のための新しいモデルデータ駆動型信頼性解析フレームワークを提案する。
提案手法は、解釈可能な機械学習、ベイズ統計、動的方程式の同定を組み合わせたものである。
以上の結果から,提案手法の信頼性評価への応用の可能性が示唆された。
論文 参考訳(メタデータ) (2022-12-13T00:57:09Z) - To be or not to be stable, that is the question: understanding neural
networks for inverse problems [0.0]
本稿では,ニューラルネットワークの安定性と精度のトレードオフを理論的に解析する。
ネットワークの安定性を高め、良好な精度を維持するために、異なる教師付きおよび教師なしのソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-24T16:16:40Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-17T12:15:47Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。