論文の概要: Harnessing physics-informed operators for high-dimensional reliability analysis problems
- arxiv url: http://arxiv.org/abs/2409.04708v1
- Date: Sat, 7 Sep 2024 04:52:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 21:01:36.931344
- Title: Harnessing physics-informed operators for high-dimensional reliability analysis problems
- Title(参考訳): 高次元信頼性解析問題に対する高調波物理インフォームド作用素
- Authors: N Navaneeth, Tushar, Souvik Chakraborty,
- Abstract要約: 信頼性分析(Reliability analysis)は、特に多数のパラメータを持つシステムにおいて、非常に難しいタスクである。
信頼性を定量化するための従来の手法は、しばしば広範なシミュレーションや実験データに依存している。
物理インフォームド演算子は,高次元信頼性解析問題を妥当な精度でシームレスに解くことができることを示す。
- 参考スコア(独自算出の注目度): 0.8192907805418583
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reliability analysis is a formidable task, particularly in systems with a large number of stochastic parameters. Conventional methods for quantifying reliability often rely on extensive simulations or experimental data, which can be costly and time-consuming, especially when dealing with systems governed by complex physical laws which necessitates computationally intensive numerical methods such as finite element or finite volume techniques. On the other hand, surrogate-based methods offer an efficient alternative for computing reliability by approximating the underlying model from limited data. Neural operators have recently emerged as effective surrogates for modelling physical systems governed by partial differential equations. These operators can learn solutions to PDEs for varying inputs and parameters. Here, we investigate the efficacy of the recently developed physics-informed wavelet neural operator in solving reliability analysis problems. In particular, we investigate the possibility of using physics-informed operator for solving high-dimensional reliability analysis problems, while bypassing the need for any simulation. Through four numerical examples, we illustrate that physics-informed operator can seamlessly solve high-dimensional reliability analysis problems with reasonable accuracy, while eliminating the need for running expensive simulations.
- Abstract(参考訳): 信頼性分析は、特に多くの確率的パラメータを持つシステムにおいて、恐ろしい作業である。
特に有限要素や有限体積法のような計算集約的な数値法を必要とする複雑な物理法則に支配されるシステムを扱う場合、信頼性を定量化するための従来の手法は、広範囲なシミュレーションや実験データに依存することが多い。
一方、サロゲートに基づく手法は、限られたデータから基礎となるモデルを近似することで、計算信頼性の効率的な代替手段を提供する。
ニューラル作用素は、偏微分方程式によって支配される物理系をモデル化するための効果的な代理として最近登場した。
これらの演算子は、様々な入力とパラメータに対するPDEの解を学ぶことができる。
本稿では、最近開発された物理インフォームドウェーブレットニューラル演算子による信頼性解析問題の解法の有効性について検討する。
特に,高次元信頼性解析問題に対する物理インフォームド演算子の適用可能性について検討し,シミュレーションの必要性を回避した。
物理インフォームド演算子は, 4つの数値例を通して, 高次元信頼性解析問題を妥当な精度でシームレスに解きながら, 高価なシミュレーションを走らせる必要がなくなることを示した。
関連論文リスト
- Loss Landscape Analysis for Reliable Quantized ML Models for Scientific Sensing [41.89148096989836]
機械学習(ML)モデルの損失景観を実証分析する手法を提案する。
本手法は,MLモデルのロバスト性を,量子化精度の関数や異なる正規化手法の下で評価することができる。
論文 参考訳(メタデータ) (2025-02-12T12:30:49Z) - Pseudo-Physics-Informed Neural Operators: Enhancing Operator Learning from Limited Data [17.835190275166408]
PPI-NO(Pseudo Physics-Informed Neural Operator)フレームワークを提案する。
PPI-NOは、基本微分作用素から導かれる偏微分方程式(PDE)を用いて、対象系に対する代理物理系を構築する。
このフレームワークは,データ共有シナリオにおける標準演算子学習モデルの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2025-02-04T19:50:06Z) - Deep Operator Networks for Bayesian Parameter Estimation in PDEs [0.0]
本稿では,Deep Operator Networks (DeepONets) と物理インフォームドニューラルネットワーク (PINN) を組み合わせて偏微分方程式 (PDE) を解く新しいフレームワークを提案する。
データ駆動学習を物理的制約と統合することにより,多様なシナリオにまたがる堅牢で正確なソリューションを実現する。
論文 参考訳(メタデータ) (2025-01-18T07:41:05Z) - Towards the Best Solution for Complex System Reliability: Can Statistics Outperform Machine Learning? [39.58317527488534]
本研究は,信頼性評価を改善するための古典的統計手法と機械学習手法の有効性を比較した。
従来の統計アルゴリズムは、ブラックボックスの機械学習手法よりも正確で解釈可能な結果が得られることを実証することを目的としている。
論文 参考訳(メタデータ) (2024-10-05T17:31:18Z) - Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning [45.78096783448304]
本研究では,PDE演算子学習のための教師なし事前学習を設計する。
シミュレーションソリューションを使わずにラベルなしのPDEデータをマイニングし、物理に着想を得た再構成ベースのプロキシタスクでニューラルネットワークを事前訓練する。
提案手法は,データ効率が高く,より一般化可能であり,従来の視覚予測モデルよりも優れる。
論文 参考訳(メタデータ) (2024-02-24T06:27:33Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Physics-aware deep learning framework for linear elasticity [0.0]
本稿では,線形連続弾性問題に対する効率的で堅牢なデータ駆動型ディープラーニング(DL)計算フレームワークを提案する。
フィールド変数の正確な表現のために,多目的損失関数を提案する。
弾性に対するAirimaty解やKirchhoff-Loveプレート問題を含むいくつかのベンチマーク問題を解く。
論文 参考訳(メタデータ) (2023-02-19T20:33:32Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - FEM-based Real-Time Simulations of Large Deformations with Probabilistic
Deep Learning [1.2617078020344616]
負荷下での超弾性体の応答を予測できる高効率なディープラーニングサロゲートフレームワークを提案する。
このフレームワークは、特殊な畳み込みニューラルネットワークアーキテクチャ(いわゆるU-Net)の形式を採っている。
論文 参考訳(メタデータ) (2021-11-02T20:05:22Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。