論文の概要: Geoopt: Riemannian Optimization in PyTorch
- arxiv url: http://arxiv.org/abs/2005.02819v5
- Date: Fri, 17 Jul 2020 16:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 06:16:18.540465
- Title: Geoopt: Riemannian Optimization in PyTorch
- Title(参考訳): Geoopt: PyTorchのリーマン最適化
- Authors: Max Kochurov, Rasul Karimov, Serge Kozlukov
- Abstract要約: Geooptのコアは、最適化アルゴリズムの汎用実装を可能にする標準のManifoldインターフェースである。
Geooptは基本をサポートする。
モレリアSGDと適応性。
最適化アルゴリズム
Geooptはサポート対象のアルゴリズムや演算方法も提供している。
幾何学を意識したニューラルネットワーク層を構成することができる多様体。
- 参考スコア(独自算出の注目度): 0.4297070083645048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geoopt is a research-oriented modular open-source package for Riemannian
Optimization in PyTorch. The core of Geoopt is a standard Manifold interface
that allows for the generic implementation of optimization algorithms. Geoopt
supports basic Riemannian SGD as well as adaptive optimization algorithms.
Geoopt also provides several algorithms and arithmetic methods for supported
manifolds, which allow composing geometry-aware neural network layers that can
be integrated with existing models.
- Abstract(参考訳): GeooptはPyTorchのRiemannian Optimizationのための研究指向のオープンソースパッケージである。
Geooptのコアは、最適化アルゴリズムの汎用実装を可能にする標準のManifoldインターフェースである。
Geooptは基本的なリーマンSGDと適応最適化アルゴリズムをサポートしている。
geooptはまた、サポートされている多様体に対していくつかのアルゴリズムと算術法を提供しており、既存のモデルと統合できる幾何対応ニューラルネットワーク層を構成できる。
関連論文リスト
- Riemannian Bilevel Optimization [35.42472057648458]
特に,2次情報を回避することを目的とした,バッチおよび勾配に基づく手法に着目する。
本稿では,一階勾配情報を活用する手法である$mathrmRF2SA$を提案し,分析する。
様々な設定の下で、$epsilon$-stationary 点に達するための明示的な収束率を提供する。
論文 参考訳(メタデータ) (2024-05-22T20:49:01Z) - Convergence and complexity of block majorization-minimization for constrained block-Riemannian optimization [18.425648833592312]
ブロック化最小化(BMM)は、非排他的部分空間推定のための単純な反復勾配である。
我々の分析はユークリッドの制約を明示的に用いている。
論文 参考訳(メタデータ) (2023-12-16T05:40:19Z) - Neural Latent Geometry Search: Product Manifold Inference via
Gromov-Hausdorff-Informed Bayesian Optimization [21.97865037637575]
我々は、この新しい定式化を数学的に定義し、ニューラル潜在幾何探索(NLGS)として作成する。
計量幾何学からのグロモフ・ハウスドルフ距離に基づいて、候補潜在測地間の距離の新たな概念を提案する。
次に、潜在測地間の滑らかさの概念に基づいてグラフ探索空間を設計し、その計算を帰納バイアスとして利用する。
論文 参考訳(メタデータ) (2023-09-09T14:29:22Z) - Warped geometric information on the optimisation of Euclidean functions [43.43598316339732]
我々は、潜在的に高次元ユークリッド空間で定義される実数値函数の最適化を考える。
函数の最適度は、曲がった計量を持つ多様体に沿う。
提案アルゴリズムは測地学の3次近似を用いており、標準ユークリッド勾配法よりも優れている傾向にある。
論文 参考訳(メタデータ) (2023-08-16T12:08:50Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - A Survey of Geometric Optimization for Deep Learning: From Euclidean
Space to Riemannian Manifold [7.737713458418288]
ディープラーニング(DL)は複雑な人工知能(AI)タスクで成功したが、様々な悪名高い問題に悩まされている。
本稿では、DLにおける幾何最適化の適用に関する総合的な調査について述べる。
畳み込みニューラルネットワーク、リカレントニューラルネットワーク、トランスファー学習、最適輸送など、さまざまなAIタスクにおける異なるDLネットワークにおける幾何学的最適化の適用について検討する。
論文 参考訳(メタデータ) (2023-02-16T10:50:15Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
ユークリッド凸化関数の違いは、統計学と機械学習の異なるタイプの問題の違いとして記述できることを示す。
最終的に、より広い範囲、より広い範囲の作業を支援するのです。
論文 参考訳(メタデータ) (2022-06-22T23:57:40Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-maxアルゴリズムはユークリッド設定で解析されている。
指数関数法 (RCEG) が線形速度で最終収束を補正したことを証明した。
論文 参考訳(メタデータ) (2022-06-04T18:53:44Z) - Geometry-aware Bayesian Optimization in Robotics using Riemannian
Mat\'ern Kernels [64.62221198500467]
ベイズ最適化のための幾何対応カーネルの実装方法を示す。
この技術は、ロボット工学における制御パラメータチューニング、パラメトリックポリシー適応、構造設計に利用できる。
論文 参考訳(メタデータ) (2021-11-02T09:47:22Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。