論文の概要: Weakly-Supervised Neural Response Selection from an Ensemble of
Task-Specialised Dialogue Agents
- arxiv url: http://arxiv.org/abs/2005.03066v1
- Date: Wed, 6 May 2020 18:40:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 04:40:00.350201
- Title: Weakly-Supervised Neural Response Selection from an Ensemble of
Task-Specialised Dialogue Agents
- Title(参考訳): タスク特化対話エージェントのアンサンブルによる弱教師付き神経応答選択
- Authors: Asir Saeed, Khai Mai, Pham Minh, Nguyen Tuan Duc, Danushka Bollegala
- Abstract要約: 異種対話エージェントが生成する応答の集合から最適な応答を選択するという問題をモデル化する。
提案手法は,カリキュラム学習機構を用いて,一対一の会話における一貫性のある応答のセットを予測することを訓練する。
- 参考スコア(独自算出の注目度): 11.21333474984984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue engines that incorporate different types of agents to converse with
humans are popular.
However, conversations are dynamic in the sense that a selected response will
change the conversation on-the-fly, influencing the subsequent utterances in
the conversation, which makes the response selection a challenging problem.
We model the problem of selecting the best response from a set of responses
generated by a heterogeneous set of dialogue agents by taking into account the
conversational history, and propose a \emph{Neural Response Selection} method.
The proposed method is trained to predict a coherent set of responses within
a single conversation, considering its own predictions via a curriculum
training mechanism.
Our experimental results show that the proposed method can accurately select
the most appropriate responses, thereby significantly improving the user
experience in dialogue systems.
- Abstract(参考訳): さまざまな種類のエージェントを組み込んで人間と会話する対話エンジンが人気である。
しかし、会話は、選択された応答が会話をオンザフライで変えるという意味で動的であり、その後の発話に影響を与えるため、応答の選択が困難な問題となる。
本稿では,対話エージェントの異種集合が生成した応答から,会話履歴を考慮したベスト応答を選択する問題をモデル化し,emph{Neural Response Selection}法を提案する。
提案手法は, カリキュラム学習機構による自己予測を考慮し, 単一の会話の中でのコヒーレントな応答のセットを予測するように学習する。
提案手法は,対話システムにおけるユーザエクスペリエンスを著しく向上させるため,最も適切な応答を高精度に選択できることを示す。
関連論文リスト
- PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - WHAT, WHEN, and HOW to Ground: Designing User Persona-Aware
Conversational Agents for Engaging Dialogue [4.328280329592151]
本稿では,WWH問題に対処するオープンドメイン対話システムを構築する方法を提案する。
提案手法は、重み付けされたデータセットブレンディング、ネガティブなペルソナ情報拡張方法、パーソナライズされた会話データセットの設計を含む。
本研究は,対話の流速と接地傾向のバランスを効果的に保ちつつ,接地応答の制御性と説明性を向上させるための応答型ラベルを導入する。
論文 参考訳(メタデータ) (2023-06-06T02:28:38Z) - EM Pre-training for Multi-party Dialogue Response Generation [86.25289241604199]
多人数対話では、応答発話の宛先を生成前に指定する必要がある。
本稿では,アドレナラベルを生成するための期待ステップを反復的に実行する期待最大化(EM)アプローチを提案する。
論文 参考訳(メタデータ) (2023-05-21T09:22:41Z) - A Systematic Evaluation of Response Selection for Open Domain Dialogue [36.88551817451512]
同じダイアログで生成された複数の応答生成元からの応答を、適切な(正)と不適切な(負)として手動でアノテートするデータセットをキュレートした。
反応選択のための最先端手法の体系的評価を行い、複数の正の候補を用いたり、手動で検証された強陰性候補を用いたりすることで、それぞれRecall@1スコアの3%と13%の増加など、相手のトレーニングデータを用いた場合と比較して、大幅な性能向上が期待できることを示す。
論文 参考訳(メタデータ) (2022-08-08T19:33:30Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
我々は、応答と関連する会話コンテキストの間のトピックを一致させるために、動的トピック追跡タスクとして応答選択をフレーム化する。
本研究では,大規模な事前学習モデルによる効率的な符号化を支援する新しいマルチタスク学習フレームワークを提案する。
DSTC-8 Ubuntu IRCデータセットの実験結果は、応答選択とトピックのアンタングル化タスクにおける最先端の結果を示している。
論文 参考訳(メタデータ) (2020-10-15T14:21:38Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Neural Generation of Dialogue Response Timings [13.611050992168506]
音声応答オフセットの分布をシミュレートするニューラルモデルを提案する。
モデルは、インクリメンタルな音声対話システムのパイプラインに統合されるように設計されている。
人間の聴取者は、対話の文脈に基づいて、特定の応答タイミングをより自然なものとみなす。
論文 参考訳(メタデータ) (2020-05-18T23:00:57Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。