論文の概要: A Systematic Assessment of Syntactic Generalization in Neural Language
Models
- arxiv url: http://arxiv.org/abs/2005.03692v2
- Date: Sat, 23 May 2020 02:23:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 23:25:49.281466
- Title: A Systematic Assessment of Syntactic Generalization in Neural Language
Models
- Title(参考訳): ニューラルネットワークモデルにおける構文一般化の体系的評価
- Authors: Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox, Roger P. Levy
- Abstract要約: 本稿では,ニューラルネットワークモデルの構文的知識を体系的に評価する。
モデルアーキテクチャによる構文一般化性能には大きな違いがある。
また, この結果から, パープレキシティと構文一般化性能の解離が明らかとなった。
- 参考スコア(独自算出の注目度): 20.589737524626745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While state-of-the-art neural network models continue to achieve lower
perplexity scores on language modeling benchmarks, it remains unknown whether
optimizing for broad-coverage predictive performance leads to human-like
syntactic knowledge. Furthermore, existing work has not provided a clear
picture about the model properties required to produce proper syntactic
generalizations. We present a systematic evaluation of the syntactic knowledge
of neural language models, testing 20 combinations of model types and data
sizes on a set of 34 English-language syntactic test suites. We find
substantial differences in syntactic generalization performance by model
architecture, with sequential models underperforming other architectures.
Factorially manipulating model architecture and training dataset size (1M--40M
words), we find that variability in syntactic generalization performance is
substantially greater by architecture than by dataset size for the corpora
tested in our experiments. Our results also reveal a dissociation between
perplexity and syntactic generalization performance.
- Abstract(参考訳): 最先端のニューラルネットワークモデルは、言語モデリングベンチマークで低いパープレキシティスコアを達成し続けているが、広範囲な予測性能の最適化が人間のような構文知識につながるかどうかは不明だ。
さらに、既存の研究は、適切な構文的一般化を生成するために必要なモデル特性について明確な図面を提供していない。
本稿では,言語モデルの統語的知識を体系的に評価し,34組の英語統語的テストスイート上で20種類のモデルタイプとデータサイズの組み合わせをテストした。
我々は,逐次モデルが他のアーキテクチャを過小評価しながら,モデルアーキテクチャによる構文一般化性能に著しい違いを見出した。
モデルアーキテクチャとトレーニングデータセットサイズ(1M-40Mワード)を要因的に操作すると,構文一般化性能のばらつきは,実験で検証したコーパスのデータセットサイズよりもはるかに大きいことがわかった。
また,パープレキシティと構文一般化性能の相関関係も明らかにした。
関連論文リスト
- Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition [4.059708117119894]
本研究は,言語モデル,特にn-gramモデルが,手書き認識の分野における最先端のディープラーニングアーキテクチャの性能に引き続き寄与するかどうかを論じる。
我々は、明示的なn-gram言語モデルを統合することなく、2つの著名なニューラルネットワークアーキテクチャ、PyLaiaとDANを評価した。
その結果,文字やサブワードの n-gram モデルの導入は,すべてのデータセット上での ATR モデルの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-04-30T07:37:48Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - SLOG: A Structural Generalization Benchmark for Semantic Parsing [68.19511282584304]
合成一般化ベンチマークの目的は、モデルがいかにして新しい複雑な言語表現に一般化するかを評価することである。
既存のベンチマークは、しばしば語彙一般化に焦点を当て、訓練に精通した構文構造における新しい語彙項目の解釈は、しばしば不足している。
SLOGは,COGSを拡張したセマンティック解析データセットである。
論文 参考訳(メタデータ) (2023-10-23T15:39:09Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
解釈不能なニューラル表現と解釈不能な統計論理のアライメント処理を導入することで,ワードコンテキスト結合空間(W2CSpace)を提案する。
我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T09:26:02Z) - Model Criticism for Long-Form Text Generation [113.13900836015122]
我々は,テキストの高レベル構造を評価するために,潜在空間におけるモデル批判という統計ツールを適用した。
我々は,コヒーレンス,コア,トピックスという,ハイレベルな談話の3つの代表的な側面について実験を行った。
トランスフォーマーベースの言語モデルでは、トピック構造をキャプチャできるが、構造コヒーレンスやモデリングコアスを維持するのが難しくなる。
論文 参考訳(メタデータ) (2022-10-16T04:35:58Z) - Learning Disentangled Representations for Natural Language Definitions [0.0]
テキストデータの連続的な構文的・意味的規則性は、構造的バイアスと生成的要因の両方をモデルに提供するのに有効である、と我々は主張する。
本研究では,文型,定義文の表現的・意味的に密接なカテゴリに存在する意味的構造を利用して,不整合表現を学習するための変分オートエンコーダを訓練する。
論文 参考訳(メタデータ) (2022-09-22T14:31:55Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Structural Supervision Improves Few-Shot Learning and Syntactic
Generalization in Neural Language Models [47.42249565529833]
人間は最小限の経験から単語に関する構造的特性を学ぶことができる。
我々は、現代のニューラル言語モデルがこの行動を英語で再現する能力を評価する。
論文 参考訳(メタデータ) (2020-10-12T14:12:37Z) - Overestimation of Syntactic Representationin Neural Language Models [16.765097098482286]
構文構造を誘導するモデルの能力を決定する一般的な方法の1つは、テンプレートに従って生成された文字列上でモデルを訓練し、それらの文字列と表面的に類似した文字列を異なる構文で区別するモデルの能力をテストすることである。
本稿では,2つの非シンタクティックなベースライン言語モデルを用いた最近の論文の肯定的な結果を再現することで,このアプローチの根本的な問題を説明する。
論文 参考訳(メタデータ) (2020-04-10T15:13:03Z) - Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities [0.0]
本稿では、構造化回帰モデルとディープニューラルネットワークを統合ネットワークアーキテクチャに結合する一般的なフレームワークを提案する。
数値実験において,本フレームワークの有効性を実証し,ベンチマークや実世界の応用において,そのメリットを実証する。
論文 参考訳(メタデータ) (2020-02-13T21:01:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。