論文の概要: CupNet -- Pruning a network for geometric data
- arxiv url: http://arxiv.org/abs/2005.05276v2
- Date: Mon, 13 Sep 2021 13:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 19:46:07.144497
- Title: CupNet -- Pruning a network for geometric data
- Title(参考訳): cupnet -- 幾何学データのためのネットワークのプルーニング
- Authors: Raoul Heese, Lukas Morand, Dirk Helm, Michael Bortz
- Abstract要約: シミュレーションされたカップドローイングプロセスから得られたデータを用いて、カップメッシュの固有の幾何学的構造を用いて、人工ニューラルネットワークを効果的に簡単な方法でプルークする方法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using data from a simulated cup drawing process, we demonstrate how the
inherent geometrical structure of cup meshes can be used to effectively prune
an artificial neural network in a straightforward way.
- Abstract(参考訳): シミュレーションされたカップ描画プロセスから得られたデータを用いて、カップメッシュの固有の幾何学的構造を用いて、人工ニューラルネットワークを効果的に簡単な方法でプルークする方法を実証する。
関連論文リスト
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - SieveNet: Selecting Point-Based Features for Mesh Networks [41.74190660234404]
メッシュは3Dコンピュータビジョンとグラフィックスで広く使用されているが、その不規則なトポロジは、既存のニューラルネットワークアーキテクチャに適用する際の課題を提起している。
メッシュニューラルネットワークの最近の進歩は、生メッシュを入力としてのみ取り込むパイオニアメソッドの境界を押し付けている。
本稿では、正規位相と正確な幾何学の両方を考慮した新しいパラダイムであるSieveNetを提案する。
論文 参考訳(メタデータ) (2023-08-24T03:40:16Z) - Representation Learning via Manifold Flattening and Reconstruction [10.823557517341964]
本研究では,組込み部分多様体の線形化と再構成を行うニューラルネットワークのペアを明示的に構築するアルゴリズムを提案する。
このような生成されたニューラルネットワークは、FlatNet(FlatNet)と呼ばれ、理論的に解釈可能であり、大規模に計算可能であり、データをテストするためにうまく一般化されている。
論文 参考訳(メタデータ) (2023-05-02T20:36:34Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - SurFit: Learning to Fit Surfaces Improves Few Shot Learning on Point
Clouds [48.61222927399794]
SurFitは3次元形状分割ネットワークのラベルを効率的に学習するための単純な手法である。
3次元形状の表面を幾何学的プリミティブに分解する自己指導型タスクに基づいている。
論文 参考訳(メタデータ) (2021-12-27T23:55:36Z) - Geometry-Aware Hierarchical Bayesian Learning on Manifolds [5.182379239800725]
多様体値の視覚データに基づく学習のための階層型ベイズ学習モデルを提案する。
まず、幾何学的認識とカーネル内畳み込みの性質を持つカーネルを導入する。
次に、ガウス過程回帰を用いて入力を整理し、最終的に特徴集約のための階層的ベイズネットワークを実装する。
論文 参考訳(メタデータ) (2021-10-30T05:47:05Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - A Framework for Neural Network Pruning Using Gibbs Distributions [34.0576955010317]
Gibbs pruningは、ニューラルネットワークのプルーニングメソッドを表現および設計するための新しいフレームワークである。
学習したウェイトとプルーニングマスクが互いに順応するように、同時にネットワークを訓練し訓練することができる。
我々は、CIFAR-10データセットでResNet-56を刈り取るための、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2020-06-08T23:04:53Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - Deep Manifold Prior [37.725563645899584]
本稿では,3次元形状の表面などの多様体構造データに先行する手法を提案する。
この方法で生成された曲面は滑らかであり、ガウス過程を特徴とする制限的な挙動を示し、完全連結および畳み込みネットワークに対して数学的にそのような特性を導出する。
論文 参考訳(メタデータ) (2020-04-08T20:47:56Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。