論文の概要: The Geometry of Nonlinear Embeddings in Kernel Discriminant Analysis
- arxiv url: http://arxiv.org/abs/2005.05546v1
- Date: Tue, 12 May 2020 04:46:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-03 18:24:58.371200
- Title: The Geometry of Nonlinear Embeddings in Kernel Discriminant Analysis
- Title(参考訳): 核判別解析における非線形埋め込みの幾何学
- Authors: Jiae Kim, Yoonkyung Lee and Zhiyu Liang
- Abstract要約: 拡張としてのカーネル判別分析は、非線形特徴写像をうまく捉えたことが知られている。
識別のための非線形埋め込みの決定において,データとカーネルがどのように相互作用するかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fisher's linear discriminant analysis is a classical method for
classification, yet it is limited to capturing linear features only. Kernel
discriminant analysis as an extension is known to successfully alleviate the
limitation through a nonlinear feature mapping. We study the geometry of
nonlinear embeddings in discriminant analysis with polynomial kernels and
Gaussian kernel by identifying the population-level discriminant function that
depends on the data distribution and the kernel. In order to obtain the
discriminant function, we solve a generalized eigenvalue problem with
between-class and within-class covariance operators. The polynomial
discriminants are shown to capture the class difference through the population
moments explicitly. For approximation of the Gaussian discriminant, we use a
particular representation of the Gaussian kernel by utilizing the exponential
generating function for Hermite polynomials. We also show that the Gaussian
discriminant can be approximated using randomized projections of the data. Our
results illuminate how the data distribution and the kernel interact in
determination of the nonlinear embedding for discrimination, and provide a
guideline for choice of the kernel and its parameters.
- Abstract(参考訳): フィッシャーの線形判別分析は古典的な分類法であるが、線形特徴のみを捉えることに制限されている。
拡張としてのカーネル識別分析は、非線形特徴写像によって制限を緩和することが知られている。
データ分布とカーネルに依存する集団レベルの識別関数を同定することにより,多項式カーネルとガウスカーネルとの判別解析における非線形埋め込みの幾何学について検討する。
判別関数を得るために、クラス間およびクラス内共分散演算子を用いた一般化固有値問題を解く。
多項式判別剤は、集団モーメントを通してクラス差を明示的にキャプチャする。
ガウスの判別式を近似するために、エルミート多項式の指数的生成関数を利用してガウス核の特殊表現を用いる。
また,gaussian discriminant はデータのランダム化投影を用いて近似できることを示した。
本研究は,非線形埋め込みの判定において,データ分布とカーネルがどのように相互作用するかを照らし,カーネルとそのパラメータを選択するためのガイドラインを提供する。
関連論文リスト
- Kernel Alignment for Unsupervised Feature Selection via Matrix Factorization [8.020732438595905]
教師なしの特徴選択は、いわゆる次元の呪いを和らげるために有効であることが証明されている。
多くの既存行列分解に基づく教師なし特徴選択法は、サブスペース学習に基づいて構築されている。
本稿では,カーネル関数とカーネルアライメントを統合したモデルを構築する。
これにより、線形および非線形の類似情報を学習し、最適なカーネルを自動的に生成することができる。
論文 参考訳(メタデータ) (2024-03-13T20:35:44Z) - A theory of data variability in Neural Network Bayesian inference [0.70224924046445]
無限広ネットワークの一般化特性をカバーする場理論形式論を提供する。
入力の統計的性質から一般化特性を導出する。
データ可変性は、(varphi3+varphi4$)-理論を思い起こさせる非ガウス的作用をもたらすことを示す。
論文 参考訳(メタデータ) (2023-07-31T14:11:32Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - GO-LDA: Generalised Optimal Linear Discriminant Analysis [6.644357197885522]
線形判別分析はパターン認識やデータ解析の研究、実践において有用なツールである。
多クラスLDAに対する一般化固有解析解は、直交判別方向を導出したり、それに沿った投影データの識別を最大化したりしないことを示す。
論文 参考訳(メタデータ) (2023-05-23T23:11:05Z) - Dynamical chaos in nonlinear Schr\"odinger models with subquadratic
power nonlinearity [137.6408511310322]
ランダムポテンシャルと準4次パワー非線形性を持つ非線形シュリンガー格子のクラスを扱う。
拡散過程は亜拡散性であり, 微細構造が複雑であることを示す。
二次パワー非線形性の限界も議論され、非局在化境界をもたらすことが示されている。
論文 参考訳(メタデータ) (2023-01-20T16:45:36Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Distributed Sparse Multicategory Discriminant Analysis [1.7223564681760166]
本稿では,スパースマルチカテゴリ線形判別分析のための凸定式化を提案し,複数のサイトにわたってデータが格納されている場合,それを分散環境に拡張する。
理論的には、分散スパース多重カテゴリー線形判別分析が、数ラウンドの通信の後、集中バージョンと同等に機能することを保証する統計特性を確立する。
論文 参考訳(メタデータ) (2022-02-22T14:23:33Z) - Robust classification with flexible discriminant analysis in
heterogeneous data [0.7646713951724009]
本稿では、各データポイントを任意のスケールパラメータで描画する、新しいロバスト判別分析を提案する。
パラメータの最大値の推定と分類は、最先端の手法と比較して非常に単純で、高速で、堅牢である。
論文 参考訳(メタデータ) (2022-01-09T09:22:56Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
複数ラベルの分類課題を解決するために,LDA(Linear Discriminant Analysis)の新たな変種を提案する。
提案手法は,個々の試料の重量を定義する確率モデルに基づく。
サリエンシに基づく重み付きマルチラベル LDA アプローチは,様々なマルチラベル分類問題の性能改善につながることが示されている。
論文 参考訳(メタデータ) (2020-04-08T19:40:53Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。