論文の概要: DEFM: Delay E mbedding based Forecast Machine for Time Series Forecasting by Spatiotemporal Information Transformation
- arxiv url: http://arxiv.org/abs/2005.07842v2
- Date: Sun, 7 Apr 2024 02:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 21:05:06.853414
- Title: DEFM: Delay E mbedding based Forecast Machine for Time Series Forecasting by Spatiotemporal Information Transformation
- Title(参考訳): DEFM:時空間情報変換による時系列予測のための遅延Embeddingに基づく予測マシン
- Authors: Hao Peng, Wei Wang, Pei Chen, Rui Liu,
- Abstract要約: Delay-Embedding-based Forecast Machine (DEFM) は,高次元観測に基づいて,対象変数の将来値を予測する。
DEFMはディープニューラルネットワークを使用して、観測された時系列から空間的および時間的関連情報を効果的に抽出する。
DEFMは、ターゲット変数の遅延埋め込みを通じてパラメータを変換することで、将来のパラメータを正確に予測することができる。
- 参考スコア(独自算出の注目度): 27.196988830046756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Making accurate forecasts for a complex system is a challenge in various practical applications. The major difficulty in solving such a problem concerns nonlinear spatiotemporal dynamics with time-varying characteristics. Takens' delay embedding theory provides a way to transform high-dimensional spatial information into temporal information. In this work, by combining delay embedding theory and deep learning techniques, we propose a novel framework, Delay-Embedding-based Forecast Machine (DEFM), to predict the future values of a target variable in a self-supervised and multistep-ahead manner based on high-dimensional observations. With a three-module spatiotemporal architecture, the DEFM leverages deep neural networks to effectively extract both the spatially and temporally associated information from the observed time series even with time-varying parameters or additive noise. The DEFM can accurately predict future information by transforming spatiotemporal information to the delay embeddings of a target variable. The efficacy and precision of the DEFM are substantiated through applications in three spatiotemporally chaotic systems: a 90-dimensional (90D) coupled Lorenz system, the Lorenz 96 system, and the Kuramoto-Sivashinsky (KS) equation with inhomogeneity. Additionally, the performance of the DEFM is evaluated on six real-world datasets spanning various fields. Comparative experiments with five prediction methods illustrate the superiority and robustness of the DEFM and show the great potential of the DEFM in temporal information mining and forecasting
- Abstract(参考訳): 複雑なシステムの正確な予測を行うことは、様々な応用において課題である。
このような問題を解く上で大きな困難は、時間的特性を持つ非線形時空間力学に関するものである。
テイケンズの遅延埋め込み理論は、高次元空間情報を時間情報に変換する方法を提供する。
本研究では,遅延埋め込み理論と深層学習技術を組み合わせることで,高次元観測に基づく自己教師型・マルチステップ・アヘッド方式で,対象変数の将来値を予測するための新しいフレームワーク,delay-Embedding-based Forecast Machine(DEFM)を提案する。
3モジュールの時空間アーキテクチャにより、DeFMはディープニューラルネットワークを活用し、時間的パラメータや付加的なノイズを伴っても、観測時系列から空間的および時間的に関連付けられた情報を効果的に抽出する。
DEFMは、時空間情報を目標変数の遅延埋め込みに変換することにより、将来の情報を正確に予測することができる。
DEFMの有効性と精度は、90次元(90D)結合ローレンツ系、ロレンツ96系、および不均一性を持つ倉本-シヴァシンスキー方程式の3つの時空間カオス系に応用することで実証される。
さらに、DEMの性能は、様々な分野にまたがる6つの実世界のデータセットで評価される。
5つの予測手法による比較実験は、DEMの優位性とロバスト性を示し、時間情報マイニングと予測におけるDEMの大きな可能性を示している。
関連論文リスト
- Analysis and Forecasting of the Dynamics of a Floating Wind Turbine Using Dynamic Mode Decomposition [0.0]
本稿では, 動的モード分解(DMD)に基づくヘキサフロート浮揚風力タービンの動特性の, データ駆動式フリーモデリングについて述べる。
フローティングシステムに作用する動き,加速度,力の予測アルゴリズムを開発した。
その結果,システム状態の短期的将来予測に対するアプローチの能力が示され,リアルタイムな予測と制御が可能となった。
論文 参考訳(メタデータ) (2024-11-08T18:38:29Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
最近の機械学習(ML)モデルでは、高解像度信号において重要なダイナミクスを捉えることが約束されている。
この研究は、低解像度のダウンサンプリング機能で重要な情報が失われることがしばしばあることを示している。
本稿では,高度な時系列シーケンスモデリングと最先端のニューラルPDEソルバの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-16T06:13:01Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning [1.9798034349981157]
乱雑なシナリオにおけるロボット動作計画のためのニューラルタイムフィールド(NTFields)を提案する。
本フレームワークは,Eykonal Equationと呼ばれる非線形一階PDEから得られる経路解を見つけるために,連続到着時間を生成する波動伝搬モデルを表す。
ギブソン・データセットを含む様々な散在した3次元環境において本手法の評価を行い,4-DOFおよび6-DOFロボットマニピュレータの動作計画問題を解く能力を実証した。
論文 参考訳(メタデータ) (2022-09-30T22:34:54Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
時系列のマルチステップ予測を効率的に正確にレンダリングするために、ニューラルネットワークコンピューティングフレームワークi.N.N.を開発した。
このフレームワークは、人工知能(AI)や機械学習分野の実践的応用において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-07-03T06:20:43Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。