Learning Adjustment Sets from Observational and Limited Experimental
Data
- URL: http://arxiv.org/abs/2005.08749v2
- Date: Tue, 17 Nov 2020 20:35:49 GMT
- Title: Learning Adjustment Sets from Observational and Limited Experimental
Data
- Authors: Sofia Triantafillou and Gregory Cooper
- Abstract summary: We introduce a method that combines large observational and limited experimental data to identify adjustment sets.
The method successfully identifies adjustment sets and improves causal effect estimation in simulated data.
- Score: 9.028773906859541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects from observational data is not always possible due
to confounding. Identifying a set of appropriate covariates (adjustment set)
and adjusting for their influence can remove confounding bias; however, such a
set is typically not identifiable from observational data alone. Experimental
data do not have confounding bias, but are typically limited in sample size and
can therefore yield imprecise estimates. Furthermore, experimental data often
include a limited set of covariates, and therefore provide limited insight into
the causal structure of the underlying system. In this work we introduce a
method that combines large observational and limited experimental data to
identify adjustment sets and improve the estimation of causal effects. The
method identifies an adjustment set (if possible) by calculating the marginal
likelihood for the experimental data given observationally-derived prior
probabilities of potential adjustmen sets. In this way, the method can make
inferences that are not possible using only the conditional dependencies and
independencies in all the observational and experimental data. We show that the
method successfully identifies adjustment sets and improves causal effect
estimation in simulated data, and it can sometimes make additional inferences
when compared to state-of-the-art methods for combining experimental and
observational data.
Related papers
- Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our method extends to projected direct effect estimands, accounting for hidden mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
Causal effects in populations are often estimated using observational datasets.
We propose a meta-algorithm that attempts to reject observational estimates that are biased.
arXiv Detail & Related papers (2022-09-27T21:47:23Z) - Generalizing experimental findings: identification beyond adjustments [2.5889737226898437]
We aim to generalize the results of a randomized controlled trial (RCT) to a target population with the help of some observational data.
We consider examples where the experimental findings cannot be generalized by an adjustment.
We show that the generalization may still be possible by other identification strategies that can be derived by applying do-calculus.
arXiv Detail & Related papers (2022-06-14T09:00:17Z) - Detecting hidden confounding in observational data using multiple
environments [0.81585306387285]
We present a theory for testable conditional independencies that are only absent when there is hidden confounding.
In most cases, the proposed procedure correctly predicts the presence of hidden confounding.
arXiv Detail & Related papers (2022-05-27T12:20:09Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
Estimating heterogeneous treatment effects is an important problem across many domains.
Currently, most existing works rely exclusively on observational data.
We propose to estimate heterogeneous treatment effects by combining large amounts of observational data and small amounts of randomized data.
arXiv Detail & Related papers (2022-02-25T18:59:54Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
We propose a general algorithm to estimate causal effects from emphmultiple data sources.
We show theoretically that this reduces the variance of the ATE estimate.
We apply this framework to inference from observational data under an outcome selection bias.
arXiv Detail & Related papers (2021-03-30T21:20:51Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - How and Why to Use Experimental Data to Evaluate Methods for
Observational Causal Inference [7.551130027327462]
We describe and analyze observational sampling from randomized controlled trials (OSRCT)
This method can be used to create constructed observational data sets with corresponding unbiased estimates of treatment effect.
We then perform a large-scale evaluation of seven causal inference methods over 37 data sets.
arXiv Detail & Related papers (2020-10-06T21:44:01Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.