論文の概要: Correlated Mixed Membership Modeling of Somatic Mutations
- arxiv url: http://arxiv.org/abs/2005.10919v1
- Date: Thu, 21 May 2020 21:52:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 23:13:02.903372
- Title: Correlated Mixed Membership Modeling of Somatic Mutations
- Title(参考訳): 体性変異の関連性混合メンバーシップモデリング
- Authors: Rahul Mehta, Muge Karaman
- Abstract要約: 癌は生物学的に冗長であるため、有効な患者治療のための全ての突然変異セットを特定することが重要である。
がん体性突然変異プロファイルの最近の研究は、パーソナライズドメディカルにおける標的治療のための突然変異を同定しようとしている。
本稿では, 潜伏表現による体性突然変異プロファイルの固有構造を推測するゼロインフレーション負二項過程を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies of cancer somatic mutation profiles seek to identify mutations
for targeted therapy in personalized medicine. Analysis of profiles, however,
is not trivial, as each profile is heterogeneous and there are multiple
confounding factors that influence the cause-and-effect relationships between
cancer genes such as cancer (sub)type, biological processes, total number of
mutations, and non-linear mutation interactions. Moreover, cancer is
biologically redundant, i.e., distinct mutations can result in the alteration
of similar biological processes, so it is important to identify all possible
combinatorial sets of mutations for effective patient treatment. To model this
phenomena, we propose the correlated zero-inflated negative binomial process to
infer the inherent structure of somatic mutation profiles through latent
representations. This stochastic process takes into account different, yet
correlated, co-occurring mutations using profile-specific negative binomial
dispersion parameters that are mixed with a correlated beta-Bernoulli process
and a probability parameter to model profile heterogeneity. These model
parameters are inferred by iterative optimization via amortized and stochastic
variational inference using the Pan Cancer dataset from The Cancer Genomic
Archive (TCGA). By examining the the latent space, we identify biologically
relevant correlations between somatic mutations.
- Abstract(参考訳): がん体性突然変異プロファイルの最近の研究は、パーソナライズドメディカルにおける標的治療のための突然変異を同定しようとしている。
しかし、各プロファイルは不均一であり、がん(sub)タイプ、生物学的過程、突然変異の総数、非線形突然変異相互作用など、がん遺伝子間の因果関係に影響を与える複数の結合因子が存在するため、プロファイルの解析は自明ではない。
さらに、がんは生物学的に冗長であり、すなわち、異なる突然変異が類似した生物学的過程の変化をもたらす可能性があるため、効果的な患者治療のために可能な全ての組み合わせ変異を同定することが重要である。
この現象をモデル化するために,潜伏表現による体性突然変異プロファイルの固有構造を推測する相関ゼロ膨張負二項法を提案する。
この確率過程は、相関したβ-ベルヌーリ過程と、プロファイルの不均一性をモデル化するための確率パラメータとを混合したプロファイル特異的な負二項分散パラメータを用いた、異なる相関の共起突然変異を考慮に入れている。
これらのモデルパラメータは、The Cancer Genomic Archive (TCGA)のPan Cancerデータセットを用いて、償却および確率的変動推論を通じて反復最適化によって推測される。
潜在空間を調べることで,体性突然変異の生物学的関連関係を明らかにする。
関連論文リスト
- Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
複雑な疾患の遺伝的アーキテクチャを調べることは、遺伝的および環境要因の高度にポリジェニックでインタラクティブな景観のために困難である。
我々は、シミュレーションと実際のジェノタイプ/フェノタイプデータセットの両方を用いて、複雑な特性を予測するために、人工ニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2024-07-26T15:20:42Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
我々は、新しいコードブック事前学習タスク、すなわちマスク付きマイクロ環境モデリングを開発する。
突然変異効果予測において、最先端の事前学習法よりも優れた性能と訓練効率を示す。
論文 参考訳(メタデータ) (2024-05-16T03:53:21Z) - Predicting loss-of-function impact of genetic mutations: a machine
learning approach [0.0]
本稿では,遺伝子変異の属性に基づいて機械学習モデルを学習し,LoFtoolスコアを予測することを目的とする。
これらの属性には、染色体上の突然変異の位置、アミノ酸の変化、変異によって引き起こされるコドンの変化が含まれていた。
モデルは, 平均2乗誤差, 平均2乗誤差, 平均2乗誤差, 平均絶対誤差, 説明分散の5倍のクロスバリデード平均を用いて評価した。
論文 参考訳(メタデータ) (2024-01-26T19:27:38Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - Conditionally Invariant Representation Learning for Disentangling
Cellular Heterogeneity [25.488181126364186]
本稿では,不必要な変数や乱れに条件付き不変な表現を学習するために,ドメインの可変性を活用する新しい手法を提案する。
単細胞ゲノム学におけるデータ統合など,生物の課題に対して本手法を適用した。
具体的には、提案手法は、対象のタスクと無関係なデータバイアスや興味の因果的説明から生物学的信号を解き放つのに役立つ。
論文 参考訳(メタデータ) (2023-07-02T12:52:41Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
本稿では,潜在因果変数を間接的に観察する際の因果表現学習問題について検討する。
目的は、 (i) 未知の線形変換(スケーリングまで)を回復し、 (ii) 潜在変数の下の有向非巡回グラフ(DAG)を決定することである。
論文 参考訳(メタデータ) (2023-01-19T18:39:48Z) - Composite Feature Selection using Deep Ensembles [130.72015919510605]
本研究では,事前定義されたグループ化を伴わない予測的特徴群発見の問題について検討する。
本稿では,特徴選択モデルのアンサンブルを用いて予測グループを探索する,新しいディープラーニングアーキテクチャを提案する。
発見群と基底真理の類似性を測定するための新しい尺度を提案する。
論文 参考訳(メタデータ) (2022-11-01T17:49:40Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - Pursuing Sources of Heterogeneity in Modeling Clustered Population [16.936362485508774]
不均一な追従と特徴選択を同時に達成するために、正規化有限混合効果回帰を提案する。
これらの効果の制約付きスパース推定は、共通の効果を持つ変数と不均一な効果を持つ変数の両方を同定する。
アルツハイマー病の遺伝的要因と脳の特徴を関連付けるための画像遺伝学研究、青年期における自殺リスクと学区の特徴との関係を探る公衆衛生学研究、野球選手の給与水準がパフォーマンスと契約状態とどのように関連しているかを理解するためのスポーツ分析研究の3つの応用が提示されている。
論文 参考訳(メタデータ) (2020-03-10T14:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。