Learning Joint Nonlinear Effects from Single-variable Interventions in
the Presence of Hidden Confounders
- URL: http://arxiv.org/abs/2005.11528v2
- Date: Tue, 16 Jun 2020 06:20:09 GMT
- Title: Learning Joint Nonlinear Effects from Single-variable Interventions in
the Presence of Hidden Confounders
- Authors: Sorawit Saengkyongam and Ricardo Silva
- Abstract summary: We propose an approach to estimate the effect of multiple simultaneous interventions in the presence of hidden confounders.
We prove identifiability under the assumption that the data is generated from a nonlinear continuous structural causal model.
We also conduct comprehensive experiments to verify the identifiability result as well as to compare the performance of our approach against a baseline on both synthetic and real-world data.
- Score: 9.196779204457059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an approach to estimate the effect of multiple simultaneous
interventions in the presence of hidden confounders. To overcome the problem of
hidden confounding, we consider the setting where we have access to not only
the observational data but also sets of single-variable interventions in which
each of the treatment variables is intervened on separately. We prove
identifiability under the assumption that the data is generated from a
nonlinear continuous structural causal model with additive Gaussian noise. In
addition, we propose a simple parameter estimation method by pooling all the
data from different regimes and jointly maximizing the combined likelihood. We
also conduct comprehensive experiments to verify the identifiability result as
well as to compare the performance of our approach against a baseline on both
synthetic and real-world data.
Related papers
- Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
We present ContiVAE, a novel framework for estimating causal effects of continuous treatments, measured by individual dose-response curves.
We show that ContiVAE outperforms existing methods by up to 62%, demonstrating its robustness and flexibility.
arXiv Detail & Related papers (2024-10-21T07:24:26Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our method extends to projected direct effect estimands, accounting for hidden mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - Disentangle Estimation of Causal Effects from Cross-Silo Data [14.684584362172666]
We introduce an innovative disentangle architecture designed to facilitate the seamless cross-silo transmission of model parameters.
We introduce global constraints into the equation to effectively mitigate bias within the various missing domains.
Our method outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-01-04T09:05:37Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Disentangling Causal Effects from Sets of Interventions in the Presence
of Unobserved Confounders [19.32843499761667]
We aim to learn the effect of a single-intervention from both observational data and sets of interventions.
We provide an algorithm that learns the causal model parameters by pooling data from different regimes.
The effectiveness of our method is empirically demonstrated on both synthetic and real-world data.
arXiv Detail & Related papers (2022-10-11T13:42:36Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown.
We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system.
We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture.
arXiv Detail & Related papers (2022-03-04T14:21:28Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
We bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data.
We show that systematically induced correlations in the dataset are being learned and reflected in the latent representations.
We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.
arXiv Detail & Related papers (2020-06-14T12:47:34Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.