論文の概要: Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks
- arxiv url: http://arxiv.org/abs/2103.12593v1
- Date: Fri, 12 Mar 2021 10:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 03:51:54.382035
- Title: Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks
- Title(参考訳): 適応スパイキングリカレントニューラルネットワークを用いた高精度かつ効率的な時間領域分類
- Authors: Bojian Yin, Federico Corradi, Sander M. Bohte
- Abstract要約: スパイクニューラルネットワーク(SNN)は、より生物学的に実行可能で、より強力なニューラルネットワークモデルとして研究されている。
本稿では、新規なサロゲート勾配と、チューナブルおよび適応性スピッキングニューロンの繰り返しネットワークがSNNの最先端を生み出す様子を示す。
- 参考スコア(独自算出の注目度): 1.8515971640245998
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Inspired by more detailed modeling of biological neurons, Spiking neural
networks (SNNs) have been investigated both as more biologically plausible and
potentially more powerful models of neural computation, and also with the aim
of extracting biological neurons' energy efficiency; the performance of such
networks however has remained lacking compared to classical artificial neural
networks (ANNs). Here, we demonstrate how a novel surrogate gradient combined
with recurrent networks of tunable and adaptive spiking neurons yields
state-of-the-art for SNNs on challenging benchmarks in the time-domain, like
speech and gesture recognition. This also exceeds the performance of standard
classical recurrent neural networks (RNNs) and approaches that of the best
modern ANNs. As these SNNs exhibit sparse spiking, we show that they
theoretically are one to three orders of magnitude more computationally
efficient compared to RNNs with comparable performance. Together, this
positions SNNs as an attractive solution for AI hardware implementations.
- Abstract(参考訳): 生物学的ニューロンのより詳細なモデリングにインスパイアされたスパイキングニューラルネットワーク(SNN)は、神経計算のより生物学的に可塑性かつ潜在的に強力なモデルとして研究され、また生物学的ニューロンのエネルギー効率を抽出することを目的としている。
本稿では,音声やジェスチャ認識などの時間領域における難解なベンチマークにおいて,新たなサーロゲート勾配と,可変および適応的なスパイクニューロンの反復的ネットワークがsnsの最先端をもたらすことを示す。
これはまた、標準の古典的リカレントニューラルネットワーク(RNN)の性能を超え、最新のANNのそれにアプローチする。
これらのSNNはスパーススパイクを示すため、理論上は同等の性能を持つRNNに比べて1~3桁の計算効率が優れていることを示す。
これにより、SNNはAIハードウェア実装の魅力的なソリューションとして位置づけられる。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Spiking Neural Networks for Visual Place Recognition via Weighted
Neuronal Assignments [24.754429120321365]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率と低レイテンシを含む、魅力的な潜在的な利点を提供する。
高性能SNNにとって有望な領域の1つは、テンプレートマッチングと画像認識である。
本研究では,視覚的位置認識(VPR)タスクのための最初の高性能SNNを紹介する。
論文 参考訳(メタデータ) (2021-09-14T05:40:40Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
生物学的脳シナプスによく似たSNN(spiking neural Network)は、低消費電力のために注目を集めている。
我々は、関係する性能を改善する汎用ハイブリッドニューラルネットワーク(hnn)を構築した。
論文 参考訳(メタデータ) (2021-02-21T12:03:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。