論文の概要: Domain Specific, Semi-Supervised Transfer Learning for Medical Imaging
- arxiv url: http://arxiv.org/abs/2005.11746v1
- Date: Sun, 24 May 2020 13:50:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 13:50:53.704254
- Title: Domain Specific, Semi-Supervised Transfer Learning for Medical Imaging
- Title(参考訳): 医用イメージングのためのドメイン特化半監督トランスファー学習
- Authors: Jitender Singh Virk and Deepti R. Bathula
- Abstract要約: 注釈付き医用画像データの限られた利用は、ディープラーニングアルゴリズムの課題となる。
本研究では,混合非対称カーネル (MAKNet) を用いてパラメータ数を著しく削減する軽量アーキテクチャを提案する。
我々は、半教師付き学習を用いて提案アーキテクチャを訓練し、大きな医療データセットのための擬似ラベルを提供することにより、伝達学習を支援する。
- 参考スコア(独自算出の注目度): 2.0305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Limited availability of annotated medical imaging data poses a challenge for
deep learning algorithms. Although transfer learning minimizes this hurdle in
general, knowledge transfer across disparate domains is shown to be less
effective. On the other hand, smaller architectures were found to be more
compelling in learning better features. Consequently, we propose a lightweight
architecture that uses mixed asymmetric kernels (MAKNet) to reduce the number
of parameters significantly. Additionally, we train the proposed architecture
using semi-supervised learning to provide pseudo-labels for a large medical
dataset to assist with transfer learning. The proposed MAKNet provides better
classification performance with $60 - 70\%$ less parameters than popular
architectures. Experimental results also highlight the importance of
domain-specific knowledge for effective transfer learning.
- Abstract(参考訳): アノテーション付き医療画像データの可用性の制限は、ディープラーニングアルゴリズムにとって課題となる。
転送学習は一般にこのハードルを最小化しているが、異なるドメイン間の知識の転送は効果が低いことが示されている。
一方、より小さなアーキテクチャは、より良い機能を学ぶのにより魅力的であることがわかった。
そこで我々は,maknet (mixed asymmetric kernels) を用いてパラメータ数を大幅に削減する軽量アーキテクチャを提案する。
さらに,提案アーキテクチャを半教師付き学習を用いてトレーニングし,大規模医療データセットに擬似ラベルを提供し,転送学習を支援する。
提案するmaknetは、一般的なアーキテクチャよりも60~70\%少ないパラメータで、より優れた分類性能を提供する。
実験結果は、効果的な転校学習におけるドメイン固有知識の重要性も強調する。
関連論文リスト
- Multi-Task Multi-Scale Contrastive Knowledge Distillation for Efficient Medical Image Segmentation [0.0]
本論文は,医用画像分割作業におけるニューラルネットワーク間の知識伝達の実現可能性を検討することを目的とする。
データボリュームが制限される医療画像の文脈では、より大きなトレーニング済みネットワークからの知識を活用することが有用である。
論文 参考訳(メタデータ) (2024-06-05T12:06:04Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
この論文は網膜血管セグメンテーションの課題に焦点を当てている。
深層学習に基づく医用画像セグメンテーションアプローチの広範な文献レビューを提供する。
効率的でシンプルな多視点学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T06:31:08Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Efficient Medical Image Segmentation Based on Knowledge Distillation [30.857487609003197]
医用画像セグメンテーションネットワークから知識を抽出し,別の軽量ネットワークを訓練することで,効率的なアーキテクチャを提案する。
また,教師から学生ネットワークへ意味領域情報を伝達するために,医用画像セグメンテーションに適した新しい蒸留モジュールを考案した。
本研究では,本手法で蒸留した軽量ネットワークが,比較的高い動作速度と低いストレージ使用量を必要とするシナリオにおいて,無視できない価値を持つことを示す。
論文 参考訳(メタデータ) (2021-08-23T07:41:10Z) - Brain tumor grade classification Using LSTM Neural Networks with Domain
Pre-Transforms [0.0]
本稿では,手工芸品の組み合わせに基づく弱教師付き画像分類手法を提案する。
本研究では,脳腫瘍のグレードを実験的に分類し,256 x 256の解像度で術式の評価を行った。
論文 参考訳(メタデータ) (2021-06-21T07:04:52Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Learning Cross-domain Generalizable Features by Representation
Disentanglement [11.74643883335152]
ディープラーニングモデルは、異なるドメイン間で限定的な一般化性を示す。
本稿では,MIDNet(Multual-Information-based Disentangled Neural Networks)を提案する。
本手法は手書き桁データセットと胎児超音波データセットを用いて画像分類を行う。
論文 参考訳(メタデータ) (2020-02-29T17:53:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。