LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery
- URL: http://arxiv.org/abs/2005.14264v1
- Date: Thu, 28 May 2020 19:57:34 GMT
- Title: LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery
- Authors: Wentong Liao, Xiang Chen, Jingfeng Yang, Stefan Roth, Michael Goesele,
Michael Ying Yang, Bodo Rosenhahn
- Abstract summary: State-of-the-art object detection approaches have difficulties detecting dense, small targets with arbitrary orientation in large aerial images.
We present the Local-aware Region Convolutional Neural Network (LR-CNN), a novel two-stage approach for vehicle detection in aerial imagery.
- Score: 43.91170581467171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art object detection approaches such as Fast/Faster R-CNN, SSD,
or YOLO have difficulties detecting dense, small targets with arbitrary
orientation in large aerial images. The main reason is that using interpolation
to align RoI features can result in a lack of accuracy or even loss of location
information. We present the Local-aware Region Convolutional Neural Network
(LR-CNN), a novel two-stage approach for vehicle detection in aerial imagery.
We enhance translation invariance to detect dense vehicles and address the
boundary quantization issue amongst dense vehicles by aggregating the
high-precision RoIs' features. Moreover, we resample high-level semantic pooled
features, making them regain location information from the features of a
shallower convolutional block. This strengthens the local feature invariance
for the resampled features and enables detecting vehicles in an arbitrary
orientation. The local feature invariance enhances the learning ability of the
focal loss function, and the focal loss further helps to focus on the hard
examples. Taken together, our method better addresses the challenges of aerial
imagery. We evaluate our approach on several challenging datasets (VEDAI,
DOTA), demonstrating a significant improvement over state-of-the-art methods.
We demonstrate the good generalization ability of our approach on the DLR 3K
dataset.
Related papers
- YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images [33.80392696735718]
YOLC (You Only Look Clusters) is an efficient and effective framework that builds on an anchor-free object detector, CenterNet.
To overcome the challenges posed by large-scale images and non-uniform object distribution, we introduce a Local Scale Module (LSM) that adaptively searches cluster regions for zooming in for accurate detection.
We perform extensive experiments on two aerial image datasets, including Visdrone 2019 and UAVDT, to demonstrate the effectiveness and superiority of our proposed approach.
arXiv Detail & Related papers (2024-04-09T10:03:44Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
We present a new cross-modal 3D object detector, namely UPIDet, which aims to unleash the potential of the image branch from two aspects.
First, UPIDet introduces a new 2D auxiliary task called normalized local coordinate map estimation.
Second, we discover that the representational capability of the point cloud backbone can be enhanced through the gradients backpropagated from the training objectives of the image branch.
arXiv Detail & Related papers (2023-01-22T08:26:58Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
State-of-the-art object detection methods largely fail to identify small and dense objects.
We propose a small object detection pipeline that improves the feature extraction process.
We show we can alleviate the degradation of object identification in previously unseen datasets.
arXiv Detail & Related papers (2022-09-06T15:16:35Z) - DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images [11.45718985586972]
We propose a dense anchor-free rotated object detector (DARDet) for rotated object detection in aerial images.
Our DARDet directly predicts five parameters of rotated boxes at each foreground pixel of feature maps.
Our method achieves state-of-the-art performance on three commonly used aerial objects datasets.
arXiv Detail & Related papers (2021-10-03T15:28:14Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented
Object Detection in Remote Sensing Images [0.9462808515258465]
In this paper, we discuss the role of discriminative features in object detection.
We then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy.
We show that our method achieves superior detection performance compared with many state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-18T02:31:09Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Locality-Aware Rotated Ship Detection in High-Resolution Remote Sensing
Imagery Based on Multi-Scale Convolutional Network [7.984128966509492]
We propose a locality-aware rotated ship detection (LARSD) framework based on a multi-scale convolutional neural network (CNN)
The proposed framework applies a UNet-like multi-scale CNN to generate multi-scale feature maps with high-level information in high resolution.
To enlarge the detection dataset, we build a new high-resolution ship detection (HRSD) dataset, where 2499 images and 9269 instances were collected from Google Earth with different resolutions.
arXiv Detail & Related papers (2020-07-24T03:01:42Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
arXiv Detail & Related papers (2020-04-28T06:03:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.