論文の概要: Blended Multi-Modal Deep ConvNet Features for Diabetic Retinopathy
Severity Prediction
- arxiv url: http://arxiv.org/abs/2006.00197v1
- Date: Sat, 30 May 2020 06:46:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 17:51:45.410311
- Title: Blended Multi-Modal Deep ConvNet Features for Diabetic Retinopathy
Severity Prediction
- Title(参考訳): 糖尿病網膜症重症度予測のためのブレンドマルチモーダルディープコンベネット特徴
- Authors: J.D. Bodapati, N. Veeranjaneyulu, S.N. Shareef, S. Hakak, M. Bilal,
P.K.R. Maddikunta, O. Jo
- Abstract要約: 糖尿病網膜症(DR)は、世界中の視覚障害と視覚障害の主要な原因の1つである。
複数の事前学習したConvNetモデルから抽出した特徴をブレンドした網膜画像の最適表現を導出する。
DR識別は97.41%、カッパ統計は94.82、カッパ統計は81.7%、カッパ統計は71.1%である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diabetic Retinopathy (DR) is one of the major causes of visual impairment and
blindness across the world. It is usually found in patients who suffer from
diabetes for a long period. The major focus of this work is to derive optimal
representation of retinal images that further helps to improve the performance
of DR recognition models. To extract optimal representation, features extracted
from multiple pre-trained ConvNet models are blended using proposed multi-modal
fusion module. These final representations are used to train a Deep Neural
Network (DNN) used for DR identification and severity level prediction. As each
ConvNet extracts different features, fusing them using 1D pooling and cross
pooling leads to better representation than using features extracted from a
single ConvNet. Experimental studies on benchmark Kaggle APTOS 2019 contest
dataset reveals that the model trained on proposed blended feature
representations is superior to the existing methods. In addition, we notice
that cross average pooling based fusion of features from Xception and VGG16 is
the most appropriate for DR recognition. With the proposed model, we achieve an
accuracy of 97.41%, and a kappa statistic of 94.82 for DR identification and an
accuracy of 81.7% and a kappa statistic of 71.1% for severity level prediction.
Another interesting observation is that DNN with dropout at input layer
converges more quickly when trained using blended features, compared to the
same model trained using uni-modal deep features.
- Abstract(参考訳): 糖尿病網膜症(DR)は、世界中の視覚障害と視覚障害の主要な原因の1つである。
通常、長期間糖尿病患者にみられる。
この研究の主な焦点は、dr認識モデルの性能をさらに向上させる網膜画像の最適な表現を導出することである。
最適表現を抽出するために,複数の事前学習したConvNetモデルから抽出した特徴を多モード融合モジュールを用いてブレンドする。
これらの最終表現は、DR識別と重度レベルの予測に使用されるディープニューラルネットワーク(DNN)のトレーニングに使用される。
ConvNetはそれぞれ異なる特徴を抽出するが、1Dプーリングとクロスプーリングを使ってそれらを融合させることで、単一のConvNetから抽出した機能よりも表現性が向上する。
ベンチマークKaggle APTOS 2019コンテストデータセットの実験研究により、提案されたブレンドされた特徴表現に基づいてトレーニングされたモデルが既存の方法よりも優れていることが明らかになった。
さらに,Xception と VGG16 の機能の相互平均プールによる融合が,DR 認識に最も適していることに気付いた。
提案モデルの精度は97.41%であり、DR識別では94.82、重度予測では81.7%、カッパ統計では71.1%である。
もうひとつの興味深い観察は、単モードの深い特徴を用いてトレーニングされたのと同じモデルと比較して、混合機能を使用してトレーニングされた場合、入力層でのドロップアウトを伴うDNNがより早く収束することです。
関連論文リスト
- Deep Learning Ensemble for Predicting Diabetic Macular Edema Onset Using Ultra-Wide Field Color Fundus Image [3.271278111396875]
糖尿病黄斑浮腫(英: Diabetic macular edema, DME)は、糖尿病の重篤な合併症である。
超広視野カラー写真画像を用いて1年以内にci-DMEの発症を予測するアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2024-10-09T02:16:29Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - Cross-Model Comparative Loss for Enhancing Neuronal Utility in Language
Understanding [82.46024259137823]
幅広いタスクに対するクロスモデル比較損失を提案する。
3つの異なるNLUタスクから14のデータセットに対する広範な実験により比較損失の普遍的有効性を示す。
論文 参考訳(メタデータ) (2023-01-10T03:04:27Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
糖尿病網膜症解析チャレンジ(DRAC)2022から得られる糖尿病網膜症(DR)画像を自動的に評価するアンサンブル法を提案する。
まず、最先端の分類ネットワークを採用し、利用可能なデータセットの異なる分割でUW-OCTA画像のグレードをトレーニングする。
最終的に、25のモデルを取得し、そのうち上位16のモデルを選択し、アンサンブルして最終的な予測を生成する。
論文 参考訳(メタデータ) (2022-12-12T22:06:47Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
追加の注意層を持つU-net畳み込みニューラルネットワークは、最高の手首軟骨分割性能を提供する。
非MRI法を用いて軟骨体積測定の誤差を独立に評価すべきである。
論文 参考訳(メタデータ) (2022-06-22T14:19:06Z) - FEDI: Few-shot learning based on Earth Mover's Distance algorithm
combined with deep residual network to identify diabetic retinopathy [3.6623193507510012]
本稿では,Earth Moverのアルゴリズムをベースとした,糖尿病網膜症の診断支援を目的とした深部残像ネットワークの複数ショット学習モデルを提案する。
我々は,1000サンプルデータの39カテゴリに基づいて,数ショット学習のためのトレーニングと検証の分類タスクを構築し,深層残留ネットワークを訓練し,経験的事前学習モデルを得る。
事前学習モデルの重みに基づいて、Earth MoverのDistanceアルゴリズムは画像間の距離を計算し、画像間の類似性を求め、モデルのパラメータを変更してトレーニングモデルの精度を向上させる。
論文 参考訳(メタデータ) (2021-08-22T13:05:02Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Predictive Analysis of Diabetic Retinopathy with Transfer Learning [0.0]
本稿では,糖尿病網膜症分類のためのCNNアーキテクチャの性能をトランスファーラーニングの助けを借りて検討する。
その結果,VGG 16モデルを用いた画像ネット重み付きトランスファー学習は,95%の精度で最高の分類性能を示した。
論文 参考訳(メタデータ) (2020-11-08T18:54:57Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
生存時間(OS)の早期かつ正確な予測は、脳腫瘍患者に対するより良い治療計画を得るのに役立つ。
既存の予測手法は、磁気共鳴(MR)ボリュームの局所的な病変領域における放射能特性に依存している。
我々は,マルチモーダルマルチチャネルネットワーク(M2Net)のエンドツーエンドOS時間予測モデルを提案する。
論文 参考訳(メタデータ) (2020-06-01T05:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。