論文の概要: Physics Informed Deep Kernel Learning
- arxiv url: http://arxiv.org/abs/2006.04976v2
- Date: Tue, 18 Jan 2022 19:03:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 01:08:03.212183
- Title: Physics Informed Deep Kernel Learning
- Title(参考訳): 物理インフォームドディープカーネル学習
- Authors: Zheng Wang, Wei Xing, Robert Kirby, Shandian Zhe
- Abstract要約: 物理インフォームドディープカーネル学習(PI-DKL)は、遅延源を持つ微分方程式で表される物理知識を利用する。
効率的かつ効果的な推論のために、潜伏変数を疎外し、崩壊したモデルエビデンスローバウンド(ELBO)を導出する。
- 参考スコア(独自算出の注目度): 24.033468062984458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep kernel learning is a promising combination of deep neural networks and
nonparametric function learning. However, as a data driven approach, the
performance of deep kernel learning can still be restricted by scarce or
insufficient data, especially in extrapolation tasks. To address these
limitations, we propose Physics Informed Deep Kernel Learning (PI-DKL) that
exploits physics knowledge represented by differential equations with latent
sources. Specifically, we use the posterior function sample of the Gaussian
process as the surrogate for the solution of the differential equation, and
construct a generative component to integrate the equation in a principled
Bayesian hybrid framework. For efficient and effective inference, we
marginalize out the latent variables in the joint probability and derive a
collapsed model evidence lower bound (ELBO), based on which we develop a
stochastic model estimation algorithm. Our ELBO can be viewed as a nice,
interpretable posterior regularization objective. On synthetic datasets and
real-world applications, we show the advantage of our approach in both
prediction accuracy and uncertainty quantification.
- Abstract(参考訳): ディープカーネル学習は、ディープニューラルネットワークと非パラメトリック関数学習の有望な組み合わせである。
しかし、データ駆動アプローチとして、特に外挿タスクにおいて、深層カーネル学習のパフォーマンスは、不足または不十分なデータによって制限される。
これらの限界に対処するため,我々は,潜在源を持つ微分方程式に代表される物理知識を利用する物理情報付き深層核学習(pi-dkl)を提案する。
具体的には、ガウス過程の後方関数のサンプルを微分方程式の解の代用として使用し、この方程式を原理化されたベイズハイブリッドフレームワークに統合するための生成成分を構築する。
効率的かつ効果的な推論のために,確率的モデル推定アルゴリズムを開発するために,結合確率の潜伏変数を疎外し,崩壊したモデルエビデンスの下限(ELBO)を導出する。
ELBOは良好な,解釈可能な後続正則化対象とみなすことができる。
合成データセットと実世界のアプリケーションについて,予測精度と不確かさの定量化の両方において,本手法の利点を示す。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Parallel and Limited Data Voice Conversion Using Stochastic Variational
Deep Kernel Learning [2.5782420501870296]
本稿では,限られたデータを扱う音声変換手法を提案する。
変分深層学習(SVDKL)に基づく。
非滑らかでより複雑な関数を推定することができる。
論文 参考訳(メタデータ) (2023-09-08T16:32:47Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - A hybrid data driven-physics constrained Gaussian process regression
framework with deep kernel for uncertainty quantification [21.972192114861873]
本稿では,データ駆動物理制約付きガウスプロセス回帰フレームワークを提案する。
物理知識をボルツマン・ギブス分布でエンコードし、最大可能性(ML)アプローチでモデルを導出する。
提案モデルでは,高次元問題において良好な結果が得られ,その不確かさを正確に伝播し,ラベル付きデータを極めて限定的に提供した。
論文 参考訳(メタデータ) (2022-05-13T07:53:49Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
あらゆる微分方程式をガウス過程に統合できる枠組みを提案する。
本手法は,シミュレーションと実世界の応用の両方において,バニラGPの改善を示す。
論文 参考訳(メタデータ) (2022-02-24T19:02:14Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - The Promises and Pitfalls of Deep Kernel Learning [13.487684503022063]
簡単なおもちゃの例で, オーバーフィッティングを含む病理学的挙動を同定する。
この病理学を探求し、その起源を説明し、実際のデータセットに適用する方法について考察する。
深層カーネル学習の完全なベイズ処理は、このオーバーフィットを是正し、望ましいパフォーマンス改善を得ることができる。
論文 参考訳(メタデータ) (2021-02-24T07:56:49Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。