論文の概要: Neural Physicist: Learning Physical Dynamics from Image Sequences
- arxiv url: http://arxiv.org/abs/2006.05044v1
- Date: Tue, 9 Jun 2020 04:36:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 13:15:24.611009
- Title: Neural Physicist: Learning Physical Dynamics from Image Sequences
- Title(参考訳): 神経物理学者:画像シーケンスから物理力学を学ぶ
- Authors: Baocheng Zhu, Shijun Wang and James Zhang
- Abstract要約: 深層ニューラルネットワークを用いて画像シーケンスから直接物理力学を学習するニューラルフィジスト(NeurPhy)という新しいアーキテクチャを提案する。
我々のモデルは、物理的に意味のある状態表現を抽出するだけでなく、見えない画像列の長期予測を可能にする状態遷移ダイナミクスを学習する。
- 参考スコア(独自算出の注目度): 0.6445605125467573
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel architecture named Neural Physicist (NeurPhy) to learn
physical dynamics directly from image sequences using deep neural networks. For
any physical system, given the global system parameters, the time evolution of
states is governed by the underlying physical laws. How to learn meaningful
system representations in an end-to-end way and estimate accurate state
transition dynamics facilitating long-term prediction have been long-standing
challenges. In this paper, by leveraging recent progresses in representation
learning and state space models (SSMs), we propose NeurPhy, which uses
variational auto-encoder (VAE) to extract underlying Markovian dynamic state at
each time step, neural process (NP) to extract the global system parameters,
and a non-linear non-recurrent stochastic state space model to learn the
physical dynamic transition. We apply NeurPhy to two physical experimental
environments, i.e., damped pendulum and planetary orbits motion, and achieve
promising results. Our model can not only extract the physically meaningful
state representations, but also learn the state transition dynamics enabling
long-term predictions for unseen image sequences. Furthermore, from the
manifold dimension of the latent state space, we can easily identify the degree
of freedom (DoF) of the underlying physical systems.
- Abstract(参考訳): 深層ニューラルネットワークを用いて画像シーケンスから直接物理力学を学習するニューラルフィジスト(NeurPhy)という新しいアーキテクチャを提案する。
大域的なシステムのパラメータを考えると、状態の時間進化は基礎となる物理法則によって制御される。
エンドツーエンドで有意義なシステム表現を学習し、長期的な予測を促進する正確な状態遷移ダイナミクスを推定する方法は、長年の課題でした。
本稿では,表現学習と状態空間モデル(ssms)の最近の進歩を活かし,変動オートエンコーダ(vae)を用いて各時間ステップにおけるマルコフの動的状態を抽出するニューラルプロセス(np)と,動的遷移を学習するための非線形非線形非線形確率的状態空間モデルを提案する。
ニューロフィを2つの物理的実験環境、すなわち減衰振子と惑星軌道運動に適用し、有望な結果を得る。
本モデルでは,物理的に有意な状態表現を抽出するだけでなく,画像シーケンスの長期予測を可能にする状態遷移ダイナミクスを学習する。
さらに、潜在状態空間の多様体次元から、基礎となる物理系の自由度(dof)を容易に識別することができる。
関連論文リスト
- A scalable generative model for dynamical system reconstruction from neuroimaging data [5.777167013394619]
データ駆動推論は、観測された時系列の集合に基づく生成力学の推論であり、機械学習への関心が高まっている。
動的システム再構成(DSR)に特化した状態空間モデル(SSM)のトレーニング技術における最近の進歩は、基礎となるシステムの回復を可能にする。
本稿では,この問題を解く新しいアルゴリズムを提案し,モデル次元とフィルタ長とを比較検討する。
論文 参考訳(メタデータ) (2024-11-05T09:45:57Z) - Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
本稿では,既存の物理法則を学習的補正と統合するニューラルネットワーク (NeuMA) を提案する。
また,粒子駆動型3次元ガウス平滑化モデルであるParticle-GSを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:43:36Z) - Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
二周期領域上で定義される物理問題であるTaylor-Green vortexは、標準物理インフォームドニューラルネットワークと我々のモデルの両方の性能を評価するベンチマークとして使用される。
その結果,標準物理インフォームドニューラルネットワークは解の正確な予測に失敗し,初期条件を時間的に返却するだけでなく,物理の時間的変化をうまく捉えていることがわかった。
論文 参考訳(メタデータ) (2024-10-05T10:32:51Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - ST-PCNN: Spatio-Temporal Physics-Coupled Neural Networks for Dynamics
Forecasting [15.265694039283106]
本稿では,システムの物理を規定するパラメータを学習する物理結合型ニューラルネットワークモデルを提案する。
3つの目標を達成するために,時空間物理結合ニューラルネットワーク(ST-PCNN)モデルを提案する。
ST-PCNNが既存の物理インフォームドモデルより優れていることを検証する。
論文 参考訳(メタデータ) (2021-08-12T19:34:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。