Characterizing Quantum Networks: Insights from Coherence Theory
- URL: http://arxiv.org/abs/2006.06693v1
- Date: Thu, 11 Jun 2020 18:00:02 GMT
- Title: Characterizing Quantum Networks: Insights from Coherence Theory
- Authors: Tristan Kraft, Cornelia Spee, Xiao-Dong Yu, Otfried G\"uhne
- Abstract summary: Networks based on entangled quantum systems enable interesting applications in quantum information processing.
We show that the theory of quantum coherence provides powerful tools for analyzing this problem.
- Score: 2.6226104767204546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Networks based on entangled quantum systems enable interesting applications
in quantum information processing and the understanding of the resulting
quantum correlations is essential for advancing the technology. We show that
the theory of quantum coherence provides powerful tools for analyzing this
problem. For that, we demonstrate that a recently proposed approach to network
correlations based on covariance matrices can be improved and analytically
evaluated for the most important cases.
Related papers
- Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Percolation Theories for Quantum Networks [5.004146855779428]
Review paper discusses a fundamental question: how can entanglement be effectively and indirectly distributed between distant nodes in an imperfect quantum network?
We show that the classical percolation frameworks do not uniquely define the network's indirect connectivity.
This realization leads to the emergence of an alternative theory called concurrence percolation,'' which uncovers a previously unrecognized quantum advantage that emerges at large scales.
arXiv Detail & Related papers (2023-10-27T18:24:58Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Intrinsic relationships of Quantum Resource Theories and their roles in
Quantum Metrology [0.0]
We focus on the resource theories of entanglement, discord-like quantum correlations, and quantum coherence.
This thesis includes also the contributions on the dynamics of these quantum resources in various models of open quantum systems.
arXiv Detail & Related papers (2022-11-15T08:21:55Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Network Utility: A Framework for Benchmarking Quantum Networks [14.638996634412976]
We propose a general framework for quantifying the performance of a quantum network.
We define the quantum network utility metric $U_QN$ to capture the social and economic value of quantum networks.
arXiv Detail & Related papers (2022-10-19T17:50:11Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - The role of coherence theory in attractor quantum neural networks [0.0]
We investigate attractor quantum neural networks (aQNNs) within the framework of coherence theory.
We show that aQNNs are associated to non-coherence-generating quantum channels.
arXiv Detail & Related papers (2021-12-20T21:26:22Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Symmetries in quantum networks lead to no-go theorems for entanglement
distribution and to verification techniques [0.0]
We show that symmetries provide a versatile tool for the analysis of correlations in quantum networks.
We provide an analytical approach to characterize correlations in large network structures with arbitrary topologies.
Our methods can be used to design certification methods for the functionality of specific links in a network.
arXiv Detail & Related papers (2021-08-05T16:52:37Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.