Intelligent Decision Support System for Updating Control Plans
- URL: http://arxiv.org/abs/2006.08153v1
- Date: Mon, 15 Jun 2020 06:16:51 GMT
- Title: Intelligent Decision Support System for Updating Control Plans
- Authors: Fadwa Oukhay, Pascale Zarat\'e (UT1, IRIT, IRIT-ADRIA), Taieb Romdhane
- Abstract summary: This paper proposes an intelligent DSS for quality control planning.
The proposed RS makes it possible to continuously update the control plans in order to be adapted to the actual process quality situation.
A numerical application is performed in a real case study in order to illustrate the feasibility and practicability of the proposed DSS.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the current competitive environment, it is crucial for manufacturers to
make the best decisions in the shortest time, in order to optimize the
efficiency and effectiveness of the manufacturing systems. These decisions
reach from the strategic level to tactical and operational production planning
and control. In this context, elaborating intelligent decisions support systems
(DSS) that are capable of integrating a wide variety of models along with data
and knowledge resources has become promising. This paper proposes an
intelligent DSS for quality control planning. The DSS is a recommender system
(RS) that helps the decision maker to select the best control scenario using
two different approaches. The first is a manual choice using a multi-criteria
decision making method. The second is an automatic recommendation based on
case-based reasoning (CBR) technique. Furthermore, the proposed RS makes it
possible to continuously update the control plans in order to be adapted to the
actual process quality situation. In so doing, CBR is used for learning the
required knowledge in order to improve the decision quality. A numerical
application is performed in a real case study in order to illustrate the
feasibility and practicability of the proposed DSS.
Related papers
- Dynamic Information Sub-Selection for Decision Support [5.063114309794011]
We introduce Dynamic Information Sub-Selection (DISS), a novel framework of AI assistance designed to enhance the performance of black-box decision-makers.
We explore several applications of DISS, including biased decision-maker support, expert assignment optimization, large language model decision support, and interpretability.
arXiv Detail & Related papers (2024-10-30T20:00:54Z) - Balancing Optimality and Diversity: Human-Centered Decision Making through Generative Curation [6.980546503227467]
We introduce a novel framework called generative curation, which optimize the true desirability of decision options by integrating both quantitative and qualitative aspects.
We propose two implementation approaches: a generative neural network architecture that produces a distribution $pi$ to efficiently sample a diverse set of near-optimal actions, and a sequential optimization method to iteratively generate solutions.
We validate our approach with extensive datasets, demonstrating its effectiveness in enhancing decision-making processes across a range of complex environments.
arXiv Detail & Related papers (2024-09-17T20:13:32Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Optimal Sequential Decision-Making in Geosteering: A Reinforcement
Learning Approach [0.0]
Trajectory adjustment decisions throughout the drilling process, called geosteering, affect subsequent choices and information gathering.
We use the Deep Q-Network (DQN) method, a model-free reinforcement learning (RL) method that learns directly from the decision environment.
For two previously published synthetic geosteering scenarios, our results show that RL achieves high-quality outcomes comparable to the quasi-optimal ADP.
arXiv Detail & Related papers (2023-10-07T10:49:30Z) - Risk-reducing design and operations toolkit: 90 strategies for managing
risk and uncertainty in decision problems [65.268245109828]
This paper develops a catalog of such strategies and develops a framework for them.
It argues that they provide an efficient response to decision problems that are seemingly intractable due to high uncertainty.
It then proposes a framework to incorporate them into decision theory using multi-objective optimization.
arXiv Detail & Related papers (2023-09-06T16:14:32Z) - A Machine Learning Approach to Two-Stage Adaptive Robust Optimization [6.943816076962257]
We propose an approach based on machine learning to solve two-stage linear adaptive robust optimization problems.
We encode the optimal here-and-now decisions, the worst-case scenarios associated with the optimal here-and-now decisions, and the optimal wait-and-see decisions.
We train a machine learning model that predicts high-quality strategies for the here-and-now decisions, the worst-case scenarios associated with the optimal here-and-now decisions, and the wait-and-see decisions.
arXiv Detail & Related papers (2023-07-23T19:23:06Z) - Best Arm Identification for Stochastic Rising Bandits [84.55453174601826]
Rising Bandits (SRBs) model sequential decision-making problems in which the expected reward of the available options increases every time they are selected.
This paper focuses on the fixed-budget Best Arm Identification (BAI) problem for SRBs.
We propose two algorithms to tackle the above-mentioned setting, namely R-UCBE and R-SR.
arXiv Detail & Related papers (2023-02-15T08:01:37Z) - Subgoal-Based Explanations for Unreliable Intelligent Decision Support
Systems [22.20142645430695]
We introduce a novel explanation type, subgoal-based explanations, for planning-based IDS systems.
We demonstrate that subgoal-based explanations lead to improved user task performance, improve user ability to distinguish optimal and suboptimal IDS recommendations, are preferred by users, and enable more robust user performance in the case of IDS failure.
arXiv Detail & Related papers (2022-01-11T21:13:22Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Learning High-Level Policies for Model Predictive Control [54.00297896763184]
Model Predictive Control (MPC) provides robust solutions to robot control tasks.
We propose a self-supervised learning algorithm for learning a neural network high-level policy.
We show that our approach can handle situations that are difficult for standard MPC.
arXiv Detail & Related papers (2020-07-20T17:12:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.