論文の概要: Equilibrium Propagation for Complete Directed Neural Networks
- arxiv url: http://arxiv.org/abs/2006.08798v2
- Date: Wed, 17 Jun 2020 10:23:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 02:12:32.955671
- Title: Equilibrium Propagation for Complete Directed Neural Networks
- Title(参考訳): 完全指向型ニューラルネットワークの平衡伝播
- Authors: Matilde Tristany Farinha, S\'ergio Pequito, Pedro A. Santos, M\'ario
A. T. Figueiredo
- Abstract要約: 最も成功したニューラルネットワークの学習アルゴリズム、バックプロパゲーションは生物学的に不可能であると考えられている。
我々は,平衡伝播学習の枠組みを構築し拡張することによって,生物学的に妥当な神経学習の話題に貢献する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial neural networks, one of the most successful approaches to
supervised learning, were originally inspired by their biological counterparts.
However, the most successful learning algorithm for artificial neural networks,
backpropagation, is considered biologically implausible. We contribute to the
topic of biologically plausible neuronal learning by building upon and
extending the equilibrium propagation learning framework. Specifically, we
introduce: a new neuronal dynamics and learning rule for arbitrary network
architectures; a sparsity-inducing method able to prune irrelevant connections;
a dynamical-systems characterization of the models, using Lyapunov theory.
- Abstract(参考訳): 人工ニューラルネットワークは、教師あり学習において最も成功したアプローチの1つで、もともと彼らの生物学的なアプローチにインスパイアされていた。
しかし、人工ニューラルネットワークの最も成功した学習アルゴリズムであるバックプロパゲーションは生物学的に有望ではないと考えられている。
我々は,平衡伝播学習の枠組みを構築し拡張することによって,生物学的に妥当な神経学習の話題に貢献する。
具体的には,任意のネットワークアーキテクチャに対する新たなニューロンのダイナミクスと学習規則,無関係な接続を回避可能なスパース性誘導手法,リアプノフ理論を用いたモデルの動的システム特徴付けなどを紹介する。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - CHANI: Correlation-based Hawkes Aggregation of Neurons with bio-Inspiration [7.26259898628108]
本研究の目的は,生物学にインスパイアされたニューラルネットワークが,局所的な変換のみによって分類タスクを学習できることを数学的に証明することである。
我々は、ホークス過程によってニューロンの活動がモデル化されるCHANIというスパイクニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T07:17:58Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs [10.524752369156339]
生物学的神経系は、現在の人工ニューラルネットワークと根本的に異なる方法で生成される。
対照的に、生物学的神経系は動的自己組織化過程を通じて成長する。
論文 参考訳(メタデータ) (2023-07-17T01:58:52Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - The least-control principle for learning at equilibrium [65.2998274413952]
我々は、平衡反復ニューラルネットワーク、深層平衡モデル、メタラーニングを学ぶための新しい原理を提案する。
私たちの結果は、脳がどのように学習するかを明らかにし、幅広い機械学習問題にアプローチする新しい方法を提供します。
論文 参考訳(メタデータ) (2022-07-04T11:27:08Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
ディープフィードバックコントロール(Deep Feedback Control, DFC)は、フィードバックコントローラを使用して、望ましい出力ターゲットにマッチするディープニューラルネットワークを駆動し、クレジット割り当てに制御信号を使用する新しい学習方法である。
学習規則は空間と時間において完全に局所的であり、幅広い接続パターンに対するガウス・ニュートンの最適化を近似する。
さらに,DFCと皮質錐体ニューロンのマルチコンパートメントモデルと,局所的な電圧依存性のシナプス可塑性規則を関連づける。
論文 参考訳(メタデータ) (2021-06-15T05:30:17Z) - A multi-agent model for growing spiking neural networks [0.0]
このプロジェクトでは、学習メカニズムとして、スパイキングニューラルネットワークのニューロン間の接続を拡大するためのルールについて検討している。
シミュレーション環境での結果は、与えられたパラメータセットに対して、テストされた関数を再現するトポロジに到達可能であることを示した。
このプロジェクトはまた、モデルパラメーターに最適な値を得るために、遺伝的アルゴリズムのようなテクニックを使用するための扉を開く。
論文 参考訳(メタデータ) (2020-09-21T15:11:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。