論文の概要: Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction
- arxiv url: http://arxiv.org/abs/2006.08849v1
- Date: Tue, 16 Jun 2020 00:56:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 21:31:43.783805
- Title: Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction
- Title(参考訳): 長期空間時間予測のための動的注意の保存
- Authors: Haoxing Lin, Rufan Bai, Weijia Jia, Xinyu Yang, Yongjian You
- Abstract要約: 長期予測は非常にエラーに敏感であり、都市的な現象を予測する際にはより重要になる。
本稿では,新しいマルチスペースアテンション(MSA)機構を備えた動的スイッチアテンションネットワーク(DSAN)を提案する。
短期予測と長期予測の両方において,DSANの優位性を示す。
- 参考スコア(独自算出の注目度): 24.752083385400343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective long-term predictions have been increasingly demanded in urban-wise
data mining systems. Many practical applications, such as accident prevention
and resource pre-allocation, require an extended period for preparation.
However, challenges come as long-term prediction is highly error-sensitive,
which becomes more critical when predicting urban-wise phenomena with
complicated and dynamic spatial-temporal correlation. Specifically, since the
amount of valuable correlation is limited, enormous irrelevant features
introduce noises that trigger increased prediction errors. Besides, after each
time step, the errors can traverse through the correlations and reach the
spatial-temporal positions in every future prediction, leading to significant
error propagation. To address these issues, we propose a Dynamic
Switch-Attention Network (DSAN) with a novel Multi-Space Attention (MSA)
mechanism that measures the correlations between inputs and outputs explicitly.
To filter out irrelevant noises and alleviate the error propagation, DSAN
dynamically extracts valuable information by applying self-attention over the
noisy input and bridges each output directly to the purified inputs via
implementing a switch-attention mechanism. Through extensive experiments on two
spatial-temporal prediction tasks, we demonstrate the superior advantage of
DSAN in both short-term and long-term predictions.
- Abstract(参考訳): 都市別データマイニングシステムでは,長期的有効予測がますます求められている。
事故防止や資源の事前配置といった多くの実用化には、準備期間の延長が必要である。
しかし、長期予測は非常にエラーに敏感であり、複雑な空間的時間的相関を伴う都市的な現象を予測する場合には、より重要となる。
特に、貴重な相関の量が限られているため、非常に無関係な特徴は、予測エラーの増加を引き起こすノイズをもたらす。
さらに、各時間ステップの後に、エラーは相関を通り抜け、将来の予測ごとに空間的-時間的位置に到達することができ、重大なエラー伝播を引き起こす。
これらの問題に対処するため、入力と出力の相関を明示的に測定する新しいマルチスペース注意機構を備えた動的スイッチ注意ネットワーク(DSAN)を提案する。
無関係なノイズをフィルタリングし、誤り伝播を緩和するため、dsanはノイズ入力に自己アテンションを適用して価値情報を動的に抽出し、各出力をスイッチアテンション機構を実装して清浄された入力に直接ブリッジする。
2つの時空間予測タスクに関する広範な実験を通じて、DSANの短期的および長期的予測における優位性を示す。
関連論文リスト
- STAA: Spatio-Temporal Alignment Attention for Short-Term Precipitation Forecasting [9.177158814568887]
SATAを時間的アライメントモジュールとし、STAUを時間的アライメント特徴抽出器とする、時間的アライメントに基づく短期降水予測モデル。
衛星データとERA5データに基づいて、我々のモデルはRMSEの12.61%の改善を達成し、最先端の手法と比較した。
論文 参考訳(メタデータ) (2024-09-06T10:28:52Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - STG-GAN: A spatiotemporal graph generative adversarial networks for
short-term passenger flow prediction in urban rail transit systems [11.167132464665578]
短期の旅客フロー予測は、都市交通システムを管理する上で重要であるが、難しい課題である。
本稿では,予測精度が高く,高い効率,メモリ占有率の低い,ディープラーニングに基づく時間グラフ生成対向ネットワーク(STG-GAN)モデルを提案する。
本研究は、特に現実の応用の観点から、短期の乗客フロー予測を行う上で、批判的な経験を提供することができる。
論文 参考訳(メタデータ) (2022-02-10T13:18:11Z) - Building Autocorrelation-Aware Representations for Fine-Scale
Spatiotemporal Prediction [1.2862507359003323]
本稿では,空間統計理論をニューラルネットワークに組み込んだ新しいディープラーニングアーキテクチャを提案する。
DeepLATTEには、局所的自己相関パターンとグローバルな自己相関傾向の両方を強制する、自己相関誘導半教師付き学習戦略が含まれている。
我々は,DeepLATTEの公開データを用いた実演を行い,健康上の重要なトピックとして,高度に適合した複雑な物理環境下での空気質予測を行った。
論文 参考訳(メタデータ) (2021-12-10T03:21:19Z) - Multi-axis Attentive Prediction for Sparse EventData: An Application to
Crime Prediction [16.654369376687296]
本稿では,2つの観測角度による事象伝播の短期的ダイナミクスと長期的意味論の両方を抽出するための,純粋に注意的なアプローチを提案する。
提案したコントラスト学習目的は,MAPSEDのセマンティクスとイベントのダイナミックスを捉える能力を大幅に向上させる。
論文 参考訳(メタデータ) (2021-10-05T02:38:46Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
リカレントニューラルネットワークとフィードフォワードディープネットワークという2つの一般的な手法は、粗い動きの傾向を予測することができる。
本稿では,新たな逆誤差増大を伴う簡易かつ効果的な粗大きめ機構に従えば,ARNet(Adversarial Refinement Network)を提案する。
論文 参考訳(メタデータ) (2020-11-23T05:42:20Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
論文 参考訳(メタデータ) (2020-04-23T08:30:00Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。