Lower bounds for the mean dissipated heat in an open quantum system
- URL: http://arxiv.org/abs/2006.09960v1
- Date: Wed, 17 Jun 2020 16:15:47 GMT
- Title: Lower bounds for the mean dissipated heat in an open quantum system
- Authors: Kazunari Hashimoto, Bassano Vacchini, and Chikako Uchiyama
- Abstract summary: Landauer's principle provides a perspective on the physical meaning of information.
Recent efforts have provided another lower bound associated with the thermodynamic fluctuation of heat.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Landauer's principle provides a perspective on the physical meaning of
information as well as on the minimum working cost of information processing.
Whereas most studies have related the decrease in entropy during a
computationally irreversible process to a lower bound of dissipated heat,
recent efforts have also provided another lower bound associated with the
thermodynamic fluctuation of heat. The coexistence of the two conceptually
independent bounds has stimulated comparative studies of their close
relationship or tightness; however, these studies were concerned with finite
quantum systems that allowed the revival of erased information because of a
finite recurrence time. We broaden these comparative studies further to open
quantum systems with infinite recurrence times. By examining their dependence
on the initial state, we find the independence of the thermodynamic bound from
the initial coherence, whereas the entropic bound depends on both the initial
coherence and population. A crucial role is indicated by the purity of the
initial state: the entropic bound is tighter when the initial condition is
sufficiently mixed, whereas the thermodynamic bound is tighter when the initial
state is close to a pure state. These trends are consistent with previous
results obtained for finite systems.
Related papers
- The Limits of Pure Exploration in POMDPs: When the Observation Entropy is Enough [40.82741665804367]
We study a simple approach of maximizing the entropy over observations in place true latent states.
We show how knowledge of the latter can be exploited to compute a regularization of the observation entropy to improve principled performance.
arXiv Detail & Related papers (2024-06-18T17:00:13Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Effect of quantum coherence on Landauer's principle [0.0]
Quantum Landauer's principle provides a fundamental lower bound for energy dissipation occurred with information erasure in the quantum regime.
Recent efforts have also provided another lower bound associated with the thermal fluctuation of the dissipated energy(thermodynamic bound)
arXiv Detail & Related papers (2022-03-31T00:17:42Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Finite-Time Quantum Landauer Principle and Quantum Coherence [0.0]
We show that the dissipated heat is lower-bounded by the conventional Landauer cost.
We derive a lower bound for heat dissipation in terms of quantum coherence.
arXiv Detail & Related papers (2021-06-10T13:44:31Z) - Fluctuation-dissipation relations for thermodynamic distillation
processes [0.10427337206896375]
fluctuation-dissipation theorem is a fundamental result in statistical physics.
We first characterise optimal thermodynamic distillation processes.
We then prove a relation between the amount of free energy dissipated in such processes and the free energy fluctuations of the initial state of the system.
arXiv Detail & Related papers (2021-05-25T08:53:19Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Lower Bound on Irreversibility in Thermal Relaxation of Open Quantum
Systems [4.111899441919164]
Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower-bounded by a relative entropy between the unitarily-evolved state and the final state.
Our finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.
arXiv Detail & Related papers (2021-02-15T05:17:11Z) - Initial-State Dependence of Thermodynamic Dissipation for any Quantum
Process [0.0]
We show new exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales.
For any finite-time process with a fixed initial environment, we show that the contraction of the system's distinction exactly quantifies its thermodynamic dissipation.
arXiv Detail & Related papers (2020-02-26T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.