Initial-State Dependence of Thermodynamic Dissipation for any Quantum
Process
- URL: http://arxiv.org/abs/2002.11425v3
- Date: Thu, 25 Feb 2021 09:56:36 GMT
- Title: Initial-State Dependence of Thermodynamic Dissipation for any Quantum
Process
- Authors: Paul M. Riechers and Mile Gu
- Abstract summary: We show new exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales.
For any finite-time process with a fixed initial environment, we show that the contraction of the system's distinction exactly quantifies its thermodynamic dissipation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: New exact results about the nonequilibrium thermodynamics of open quantum
systems at arbitrary timescales are obtained by considering all possible
variations of initial conditions of a system, its environment, and correlations
between them. First we obtain a new quantum-information theoretic equality for
entropy production, valid for an arbitrary initial joint state of system and
environment. For any finite-time process with a fixed initial environment, we
then show that the contraction of the system's distinction -- relative to the
minimally dissipative state -- exactly quantifies its thermodynamic
dissipation. The quantum component of this dissipation is the change in
coherence relative to the minimally dissipative state. Implications for quantum
state preparation and local control are explored. For nonunitary processes --
like the preparation of any particular quantum state -- we find that mismatched
expectations lead to divergent dissipation as the actual initial state becomes
orthogonal to the anticipated one.
Related papers
- Deriving the Landauer Principle From the Quantum Shannon Entropy [0.0]
We derive an expression for the equilibrium probability distribution of a quantum state in contact with a noisy thermal environment.
We show that the free energy required to erase or reset a qubit depends sensitively on both the fidelity of the target state and on the physical properties of the environment.
arXiv Detail & Related papers (2024-10-08T07:01:37Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - On the role of initial coherence in the spin phase-space entropy
production rate [0.0]
We show that, when considering entropy production generated in a process taking a finite-size bipartite quantum system out of equilibrium through local non-unitary channels, no general monotonicity relationship exists between the entropy production and degree of quantum coherence in the state of the system.
Our results call for a systematic study of the role of genuine quantum features in the non-equilibrium thermodynamics of quantum processes.
arXiv Detail & Related papers (2022-07-12T15:48:12Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Fluctuation-dissipation relations for thermodynamic distillation
processes [0.10427337206896375]
fluctuation-dissipation theorem is a fundamental result in statistical physics.
We first characterise optimal thermodynamic distillation processes.
We then prove a relation between the amount of free energy dissipated in such processes and the free energy fluctuations of the initial state of the system.
arXiv Detail & Related papers (2021-05-25T08:53:19Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Sufficient conditions for adiabaticity in open quantum systems [0.0]
We introduce sufficient conditions for the adiabatic approximation in open quantum systems.
We first illustrate our results by showing that the adiabatic approximation for open systems is compatible with the description of quantum thermodynamics at thermal equilibrium.
We also apply our sufficient conditions as a tool in quantum control, evaluating the adiabatic behavior for the Hamiltonians of both the Deutsch algorithm and the Landau-Zener model under decoherence.
arXiv Detail & Related papers (2020-07-29T22:19:42Z) - Lower bounds for the mean dissipated heat in an open quantum system [0.0]
Landauer's principle provides a perspective on the physical meaning of information.
Recent efforts have provided another lower bound associated with the thermodynamic fluctuation of heat.
arXiv Detail & Related papers (2020-06-17T16:15:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.