Automated Detection of COVID-19 from CT Scans Using Convolutional Neural
Networks
- URL: http://arxiv.org/abs/2006.13212v1
- Date: Tue, 23 Jun 2020 06:50:41 GMT
- Title: Automated Detection of COVID-19 from CT Scans Using Convolutional Neural
Networks
- Authors: Rohit Lokwani, Ashrika Gaikwad, Viraj Kulkarni, Aniruddha Pant, Amit
Kharat
- Abstract summary: COVID-19 is an infectious disease that causes respiratory problems similar to those caused by SARS-CoV 2003.
We build a 2D segmentation model using the U-Net architecture, which gives the output by marking out the region of infection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19 is an infectious disease that causes respiratory problems similar to
those caused by SARS-CoV (2003). Currently, swab samples are being used for its
diagnosis. The most common testing method used is the RT-PCR method, which has
high specificity but variable sensitivity. AI-based detection has the
capability to overcome this drawback. In this paper, we propose a prospective
method wherein we use chest CT scans to diagnose the patients for COVID-19
pneumonia. We use a set of open-source images, available as individual CT
slices, and full CT scans from a private Indian Hospital to train our model. We
build a 2D segmentation model using the U-Net architecture, which gives the
output by marking out the region of infection. Our model achieves a sensitivity
of 96.428% (95% CI: 88%-100%) and a specificity of 88.39% (95% CI: 82%-94%).
Additionally, we derive a logic for converting our slice-level predictions to
scan-level, which helps us reduce the false positives.
Related papers
- A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
arXiv Detail & Related papers (2021-05-14T11:59:47Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - Automated triage of COVID-19 from various lung abnormalities using chest
CT features [2.4956060473718407]
We propose a fully automated AI based system that takes as input chest CT scans and triages COVID-19 cases.
We produce multiple features, including lung and infections statistics, texture, shape and location, to train a machine learning based classifier.
We evaluated our system on a dataset of 2191 CT cases and demonstrated a robust solution with 90.8% sensitivity at 85.4% specificity with 94.0% ROC-AUC.
arXiv Detail & Related papers (2020-10-24T19:44:48Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - A Novel and Reliable Deep Learning Web-Based Tool to Detect COVID-19
Infection from Chest CT-Scan [0.0]
corona virus is already spread around the world in many countries, and it has taken many lives.
One of the largest public chest CT-scan databases, containing 746 participants was used in this experiment.
A combination of the Densely connected convolutional network (DenseNet) in order to reduce image dimensions and Nu-SVM as an anti-overfitting bottleneck was chosen to distinguish between COVID-19 and healthy controls.
arXiv Detail & Related papers (2020-06-24T13:47:54Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.