COVIDLite: A depth-wise separable deep neural network with white balance
and CLAHE for detection of COVID-19
- URL: http://arxiv.org/abs/2006.13873v1
- Date: Fri, 19 Jun 2020 02:30:34 GMT
- Title: COVIDLite: A depth-wise separable deep neural network with white balance
and CLAHE for detection of COVID-19
- Authors: Manu Siddhartha and Avik Santra
- Abstract summary: COVIDLite is a combination of white balance followed by Contrast Limited Adaptive Histogram Equalization ( CLAHE) and depth-wise separable convolutional neural network (DSCNN)
The proposed COVIDLite method resulted in improved performance in comparison to vanilla DSCNN with no pre-processing.
The proposed method achieved higher accuracy of 99.58% for binary classification, whereas 96.43% for multiclass classification and out-performed various state-of-the-art methods.
- Score: 1.1139113832077312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background and Objective:Currently, the whole world is facing a pandemic
disease, novel Coronavirus also known as COVID-19, which spread in more than
200 countries with around 3.3 million active cases and 4.4 lakh deaths
approximately. Due to rapid increase in number of cases and limited supply of
testing kits, availability of alternative diagnostic method is necessary for
containing the spread of COVID-19 cases at an early stage and reducing the
death count. For making available an alternative diagnostic method, we proposed
a deep neural network based diagnostic method which can be easily integrated
with mobile devices for detection of COVID-19 and viral pneumonia using Chest
X-rays (CXR) images. Methods:In this study, we have proposed a method named
COVIDLite, which is a combination of white balance followed by Contrast Limited
Adaptive Histogram Equalization (CLAHE) and depth-wise separable convolutional
neural network (DSCNN). In this method, white balance followed by CLAHE is used
as an image preprocessing step for enhancing the visibility of CXR images and
DSCNN trained using sparse cross entropy is used for image classification with
lesser parameters and significantly lighter in size, i.e., 8.4 MB without
quantization. Results:The proposed COVIDLite method resulted in improved
performance in comparison to vanilla DSCNN with no pre-processing. The proposed
method achieved higher accuracy of 99.58% for binary classification, whereas
96.43% for multiclass classification and out-performed various state-of-the-art
methods. Conclusion:Our proposed method, COVIDLite achieved exceptional results
on various performance metrics. With detailed model interpretations, COVIDLite
can assist radiologists in detecting COVID-19 patients from CXR images and can
reduce the diagnosis time significantly.
Related papers
- Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Classification of COVID-19 in Chest X-ray Images Using Fusion of Deep
Features and LightGBM [0.0]
We propose a new technique that is faster and more accurate than the other methods reported in the literature.
The proposed method uses a combination of DenseNet169 and MobileNet Deep Neural Networks to extract the features of the patient's X-ray images.
The method achieved 98.54% and 91.11% accuracies in the two-class (COVID-19, Healthy) and multi-class (COVID-19, Healthy, Pneumonia) classification problems.
arXiv Detail & Related papers (2022-06-09T14:56:24Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - A Generic Deep Learning Based Cough Analysis System from Clinically
Validated Samples for Point-of-Need Covid-19 Test and Severity Levels [85.41238731489939]
We seek to evaluate the detection performance of a rapid primary screening tool of Covid-19 based on the cough sound from 8,380 clinically validated samples.
Our proposed generic method is an algorithm based on Empirical Mode Decomposition (EMD) with subsequent classification based on a tensor of audio features.
Two different versions of DeepCough based on the number of tensor dimensions, i.e. DeepCough2D and DeepCough3D, have been investigated.
arXiv Detail & Related papers (2021-11-10T19:39:26Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Chest X-ray Image Phase Features for Improved Diagnosis of COVID-19
Using Convolutional Neural Network [2.752817022620644]
Recent research has shown radiography of COVID-19 patient contains salient information about the COVID-19 virus.
Chest X-ray (CXR) due to its faster imaging time, wide availability, low cost and portability gains much attention.
In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for improved classification of COVID-19 from CXR images.
arXiv Detail & Related papers (2020-11-06T20:26:26Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.