論文の概要: Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2408.06069v1
- Date: Mon, 12 Aug 2024 11:41:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 13:23:51.958027
- Title: Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
- Title(参考訳): 確率微分方程式による完全ベイズ微分ガウス過程
- Authors: Jian Xu, Zhiqi Lin, Min Chen, Junmei Yang, Delu Zeng, John Paisley,
- Abstract要約: 本稿では、カーネルハイパーパラメータを確率変数として扱い、結合微分方程式(SDE)を構築して、その後部分布と誘導点を学習する完全ベイズ的手法を提案する。
提案手法は,SDE法による結合変数による時間変化,包括的,現実的な後部近似を提供する。
我々の研究はベイズ的推論を推し進めるためのエキサイティングな研究の道を開き、継続的なガウス的プロセスのための強力なモデリングツールを提供する。
- 参考スコア(独自算出の注目度): 7.439555720106548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional deep Gaussian processes model the data evolution using a discrete hierarchy, whereas differential Gaussian processes (DIFFGPs) represent the evolution as an infinitely deep Gaussian process. However, prior DIFFGP methods often overlook the uncertainty of kernel hyperparameters and assume them to be fixed and time-invariant, failing to leverage the unique synergy between continuous-time models and approximate inference. In this work, we propose a fully Bayesian approach that treats the kernel hyperparameters as random variables and constructs coupled stochastic differential equations (SDEs) to learn their posterior distribution and that of inducing points. By incorporating estimation uncertainty on hyperparameters, our method enhances the model's flexibility and adaptability to complex dynamics. Additionally, our approach provides a time-varying, comprehensive, and realistic posterior approximation through coupling variables using SDE methods. Experimental results demonstrate the advantages of our method over traditional approaches, showcasing its superior performance in terms of flexibility, accuracy, and other metrics. Our work opens up exciting research avenues for advancing Bayesian inference and offers a powerful modeling tool for continuous-time Gaussian processes.
- Abstract(参考訳): 従来の深いガウス過程は離散的な階層を用いてデータ進化をモデル化するが、微分ガウス過程(DIFFGP)は無限に深いガウス過程として進化を表現する。
しかし、以前のDIFFGP法は、しばしばカーネルハイパーパラメータの不確実性を見落とし、それらを固定時間不変であると仮定し、連続時間モデルと近似推論の間のユニークな相乗効果を利用できない。
本研究では、カーネルハイパーパラメータを確率変数として扱い、結合確率微分方程式(SDE)を構築して、その後部分布と誘導点を学習する完全ベイズ的手法を提案する。
ハイパーパラメータに対する推定の不確かさを組み込むことで,モデルの柔軟性と複雑な力学への適応性を向上する。
さらに,本手法は,SDE法による結合変数による時間変化,包括的,現実的な後部近似を提供する。
実験の結果,従来の手法に比べて,柔軟性,精度,その他の指標で優れた性能を示すことができた。
我々の研究はベイズ的推論を推し進めるためのエキサイティングな研究の道を開き、継続的なガウス的プロセスのための強力なモデリングツールを提供する。
関連論文リスト
- Variational Inference for SDEs Driven by Fractional Noise [16.434973057669676]
マルコフ近似分数的ブラウン運動(fBM)によって駆動される(神経)微分方程式(SDE)の推論を行うための新しい変分フレームワークを提案する。
本稿では, ニューラルネットワークを用いて, 変動後部におけるドリフト, 拡散, 制御条件を学習し, ニューラルSDEの変分学習を実現することを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:59:21Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
本稿ではヘテロセダスティック共分散関数のモデリングのための新しいフレームワークを提案する。
後部モデルに近似し, 後部予測モデルを容易にするために, 変分推論を用いる。
提案するフレームワークは,幅広いアプリケーションに対して,堅牢で汎用的なツールを提供する。
論文 参考訳(メタデータ) (2023-08-29T15:06:47Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Variational Gaussian Process Diffusion Processes [17.716059928867345]
拡散過程(英: Diffusion process)は、微分方程式(SDE)のクラスであり、表現的モデルの豊富な族を提供する。
非線型拡散過程が先行する潜在過程を持つ生成モデルの下での確率的推論と学習は難解な問題である。
本研究では, 線形拡散過程として後続過程を近似し, アプローチの病理を指摘する。
論文 参考訳(メタデータ) (2023-06-03T09:43:59Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
従属拡散過程を変調したマルコフジャンプ過程に基づくモデルを提案する。
我々は,新しい連続時間変動推定アルゴリズムを開発した。
モデル仮定と実世界の実例に基づいて,我々のアルゴリズムを広範囲に評価する。
論文 参考訳(メタデータ) (2021-09-29T15:19:51Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
この問題に対処するための新しいドメインに依存しないアプローチを提案する。
我々は、通常の微分方程式から導かれる物理インフォームド・ランダムな特徴の合成を用いる。
提案手法は,ベンチマーク回帰タスクにおいて,他の多くの確率モデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-06-10T17:55:13Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。