論文の概要: Convolutional Neural Network Training with Distributed K-FAC
- arxiv url: http://arxiv.org/abs/2007.00784v1
- Date: Wed, 1 Jul 2020 22:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 22:54:56.085654
- Title: Convolutional Neural Network Training with Distributed K-FAC
- Title(参考訳): 分散K-FACを用いた畳み込みニューラルネットワークトレーニング
- Authors: J. Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu and Ian T.
Foster
- Abstract要約: Kronecker-factored Approximate Curvature (K-FAC)はFisher Information Matrixの近似として最近提案されている。
本稿では、大規模畳み込みニューラルネットワーク(CNN)トレーニングにおけるスケーラブルなK-FAC設計とその適用性について検討する。
- 参考スコア(独自算出の注目度): 14.2773046188145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training neural networks with many processors can reduce time-to-solution;
however, it is challenging to maintain convergence and efficiency at large
scales. The Kronecker-factored Approximate Curvature (K-FAC) was recently
proposed as an approximation of the Fisher Information Matrix that can be used
in natural gradient optimizers. We investigate here a scalable K-FAC design and
its applicability in convolutional neural network (CNN) training at scale. We
study optimization techniques such as layer-wise distribution strategies,
inverse-free second-order gradient evaluation, and dynamic K-FAC update
decoupling to reduce training time while preserving convergence. We use
residual neural networks (ResNet) applied to the CIFAR-10 and ImageNet-1k
datasets to evaluate the correctness and scalability of our K-FAC gradient
preconditioner. With ResNet-50 on the ImageNet-1k dataset, our distributed
K-FAC implementation converges to the 75.9% MLPerf baseline in 18-25% less time
than does the classic stochastic gradient descent (SGD) optimizer across scales
on a GPU cluster.
- Abstract(参考訳): 多くのプロセッサでニューラルネットワークをトレーニングすることで、解決までの時間を削減することができるが、大規模な収束と効率を維持することは困難である。
Kronecker-factored Approximate Curvature (K-FAC)は、自然勾配オプティマイザで使用できるFisher Information Matrixの近似として最近提案されている。
本稿では、大規模畳み込みニューラルネットワーク(CNN)トレーニングにおけるスケーラブルなK-FAC設計とその適用性について検討する。
本研究では,階層配置戦略,逆フリーな2次勾配評価,動的K-FAC更新デカップリングなどの最適化手法について検討した。
我々は、CIFAR-10およびImageNet-1kデータセットに適用された残留ニューラルネットワーク(ResNet)を用いて、K-FAC勾配プレコンディショナーの正確性とスケーラビリティを評価する。
ImageNet-1kデータセット上のResNet-50により、分散K-FAC実装は、GPUクラスタ上のスケールにわたる古典的確率勾配降下(SGD)最適化よりも18~25%の時間で75.9%のMLPerfベースラインに収束する。
関連論文リスト
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Kronecker-Factored Approximate Curvature for Physics-Informed Neural Networks [3.7308074617637588]
PINN損失に対するKronecker-factored almost curvature (KFAC)を提案する。
我々のKFACベースの勾配は、小さな問題に対する高価な2階法と競合し、高次元のニューラルネットワークやPDEに好適にスケールし、一階法やLBFGSを一貫して上回ります。
論文 参考訳(メタデータ) (2024-05-24T14:36:02Z) - Kronecker-Factored Approximate Curvature for Modern Neural Network
Architectures [85.76673783330334]
線形重み付け層の2つの異なる設定がクロネッカー型近似曲率(K-FAC)の2つの風味を動機付けている
重み付けをそれぞれ設定したディープ・リニア・ネットワークに対して正確であることを示す。
グラフニューラルネットワークと視覚変換器の両方をトレーニングするために、これらの2つのK-FACの違いをほとんど観測しない。
論文 参考訳(メタデータ) (2023-11-01T16:37:00Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
我々は,ニューラルネットワークの初期状態を評価するための理論的知見を備えた,GradCosineという微分可能な量を提案する。
標準制約下でGradCosineを最大化することにより、ネットワークのトレーニングとテストの両方の性能を向上させることができることを示す。
サンプル分析から実際のバッチ設定に一般化されたNIOは、無視可能なコストで、より優れた初期化を自動で探すことができる。
論文 参考訳(メタデータ) (2022-10-12T06:49:16Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - A Novel Neural Network Training Framework with Data Assimilation [2.948167339160823]
勾配計算を避けるため,データ同化に基づく勾配なし学習フレームワークを提案する。
その結果,提案手法は勾配法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-06T11:12:23Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
本稿では,畳み込みニューラルネットワークの学習にバックプロパゲーションと進化戦略の両方を用いるハイブリッド手法を提案する。
画像分類のタスクにおいて,提案手法は定期的な訓練において改善可能であることを示す。
論文 参考訳(メタデータ) (2020-04-15T17:52:48Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
大きなバッチサイズを使用してディープニューラルネットワークをトレーニングすることは、有望な結果を示し、多くの現実世界のアプリケーションに利益をもたらしている。
本稿では,大規模バッチ学習のための全層適応レートスケーリング(CLARS)アルゴリズムを提案する。
分析に基づいて,このギャップを埋め,3つの一般的な大規模バッチトレーニング手法の理論的洞察を提示する。
論文 参考訳(メタデータ) (2020-02-04T23:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。