論文の概要: Software Engineering Event Modeling using Relative Time in Temporal
Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2007.01231v2
- Date: Mon, 13 Jul 2020 01:07:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 13:51:22.157835
- Title: Software Engineering Event Modeling using Relative Time in Temporal
Knowledge Graphs
- Title(参考訳): 時間的知識グラフにおける相対時間を用いたソフトウェア工学イベントモデリング
- Authors: Kian Ahrabian, Daniel Tarlow, Hehuimin Cheng, Jin L.C. Guo
- Abstract要約: GitHubのアーティファクト間の日々のインタラクションに基づいて,マルチリレーショナルな時間知識グラフを提案する。
補間時間条件リンク予測と,補間時間条件リンク/時間予測クエリの2つの新しいデータセットを提案する。
これらのデータセットに関する我々の実験は、幅広いソフトウェアエンジニアリングの質問に答えるために知識グラフを適用する可能性を浮き彫りにした。
- 参考スコア(独自算出の注目度): 15.22542676866305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a multi-relational temporal Knowledge Graph based on the daily
interactions between artifacts in GitHub, one of the largest social coding
platforms. Such representation enables posing many user-activity and project
management questions as link prediction and time queries over the knowledge
graph. In particular, we introduce two new datasets for i) interpolated
time-conditioned link prediction and ii) extrapolated time-conditioned
link/time prediction queries, each with distinguished properties. Our
experiments on these datasets highlight the potential of adapting knowledge
graphs to answer broad software engineering questions. Meanwhile, it also
reveals the unsatisfactory performance of existing temporal models on
extrapolated queries and time prediction queries in general. To overcome these
shortcomings, we introduce an extension to current temporal models using
relative temporal information with regards to past events.
- Abstract(参考訳): 最大規模のソーシャルコーディングプラットフォームであるGitHubのアーティファクト間の日々のインタラクションに基づいて,マルチリレーショナルな時間知識グラフを提示する。
このような表現は、多くのユーザアクティビティやプロジェクト管理の質問をリンク予測や知識グラフ上の時間クエリとして表現することができる。
特に 2つの新しいデータセットを紹介します
一 補間時間条件リンク予測及び補間
二 時間条件付きリンク/時間予測クエリで、それぞれ特有な特性を有するもの
これらのデータセットの実験は、幅広いソフトウェアエンジニアリングの質問に答えるために知識グラフを適用する可能性を強調します。
一方で、外挿クエリや一般的な時間予測クエリに対する既存の時間モデルのパフォーマンスが満足できないことも明らかにしている。
これらの欠点を克服するために,過去の出来事に関する相対時間情報を用いた時間モデルの拡張を提案する。
関連論文リスト
- From Link Prediction to Forecasting: Information Loss in Batch-based Temporal Graph Learning [0.716879432974126]
バッチ指向評価の適合性はデータセットの特性に依存することを示す。
我々は、動的リンク予測をリンク予測タスクとして再構成し、データに存在する時間情報のより良い説明を行う。
論文 参考訳(メタデータ) (2024-06-07T12:45:12Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - MTGER: Multi-view Temporal Graph Enhanced Temporal Reasoning over
Time-Involved Document [26.26604509399347]
MTGERは、時間に関連する文書に対する時間的推論のための新しいフレームワークである。
多視点時間グラフにより、事実間の時間的関係を明示的にモデル化する。
MTGERは質問の摂動下でより一貫した回答を与える。
論文 参考訳(メタデータ) (2023-11-08T16:41:37Z) - Re-Temp: Relation-Aware Temporal Representation Learning for Temporal
Knowledge Graph Completion [11.699431017532367]
補外設定の下での時間的知識グラフ補完(TKGC)は、将来的な事実から欠落した実体を予測することを目的としている。
提案するモデルであるRe-Tempは,明示的な時間的埋め込みを入力として利用し,各タイムスタンプ後のスキップ情報フローを組み込んで,不要な情報を省略して予測する。
我々のモデルは、最近の8つの最先端モデル全てに顕著なマージンで勝っていることを実証する。
論文 参考訳(メタデータ) (2023-10-24T10:58:33Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
TNTComplExのような単純な手法は、最先端の手法よりもはるかに正確な結果が得られることを示す。
また,2つの時間的リンク予測モデルに対する幅広い時間的平滑化正規化の影響についても検討した。
論文 参考訳(メタデータ) (2023-09-16T16:52:49Z) - Exploring the Limits of Historical Information for Temporal Knowledge
Graph Extrapolation [59.417443739208146]
本稿では,歴史的コントラスト学習の新しい学習枠組みに基づくイベント予測モデルを提案する。
CENETは、最も潜在的なエンティティを識別するために、歴史的および非歴史的依存関係の両方を学ぶ。
提案したモデルを5つのベンチマークグラフで評価する。
論文 参考訳(メタデータ) (2023-08-29T03:26:38Z) - Temporal Graph Benchmark for Machine Learning on Temporal Graphs [54.52243310226456]
テンポラルグラフベンチマーク(TGB)は、困難で多様なベンチマークデータセットのコレクションである。
各データセットをベンチマークし、共通のモデルのパフォーマンスがデータセット間で大きく異なることを発見した。
TGBは、再現可能でアクセス可能な時間グラフ研究のための自動機械学習パイプラインを提供する。
論文 参考訳(メタデータ) (2023-07-03T13:58:20Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - Temporal Knowledge Graph Reasoning with Low-rank and Model-agnostic
Representations [1.8262547855491458]
低ランクテンソル分解モデル LowFER のパラメータ効率および時間認識拡張系である Time-LowFER を導入する。
時間を表現するための現在のアプローチのいくつかの制限に留意し、時間特徴に対するサイクル対応の時間符号化方式を提案する。
我々は,時間に敏感なデータ処理に着目した統合時間知識グラフ埋め込みフレームワークに本手法を実装した。
論文 参考訳(メタデータ) (2022-04-10T22:24:11Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
時間的知識グラフにおけるリンク予測のためのワンショット学習フレームワークを提案する。
提案手法は,実体間の時間的相互作用を効果的に符号化する自己認識機構を用いる。
実験の結果,提案アルゴリズムは2つのよく研究されたベンチマークにおいて,アートベースラインの状態よりも優れていた。
論文 参考訳(メタデータ) (2020-10-23T03:24:44Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。