論文の概要: Riemannian geometry and automatic differentiation for optimization
problems of quantum physics and quantum technologies
- arxiv url: http://arxiv.org/abs/2007.01287v4
- Date: Wed, 17 Nov 2021 12:17:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-11 20:37:57.416072
- Title: Riemannian geometry and automatic differentiation for optimization
problems of quantum physics and quantum technologies
- Title(参考訳): 量子物理学と量子技術の最適化問題に対するリーマン幾何学と自動微分
- Authors: Ilia A. Luchnikov, Mikhail E. Krechetov, Sergey N. Filippov
- Abstract要約: 制約付き最適化の新しいアプローチが複雑な量子システムに適用可能であることを示す。
提案手法は,提案したオープンソースソフトウェアとともに,雑音量子システムの最適制御に適用可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimization with constraints is a typical problem in quantum physics and
quantum information science that becomes especially challenging for
high-dimensional systems and complex architectures like tensor networks. Here
we use ideas of Riemannian geometry to perform optimization on manifolds of
unitary and isometric matrices as well as the cone of positive-definite
matrices. Combining this approach with the up-to-date computational methods of
automatic differentiation, we demonstrate the efficacy of the Riemannian
optimization in the study of the low-energy spectrum and eigenstates of
multipartite Hamiltonians, variational search of a tensor network in the form
of the multiscale entanglement-renormalization ansatz, preparation of arbitrary
states (including highly entangled ones) in the circuit implementation of
quantum computation, decomposition of quantum gates, and tomography of quantum
states. Universality of the developed approach together with the provided open
source software enable one to apply the Riemannian optimization to complex
quantum architectures well beyond the listed problems, for instance, to the
optimal control of noisy quantum systems.
- Abstract(参考訳): 制約による最適化は量子物理学や量子情報科学において典型的な問題であり、高次元システムやテンソルネットワークのような複雑なアーキテクチャでは特に困難である。
ここではリーマン幾何学の考えを用いてユニタリ行列と等尺行列の多様体と正定値行列の錐の最適化を行う。
Combining this approach with the up-to-date computational methods of automatic differentiation, we demonstrate the efficacy of the Riemannian optimization in the study of the low-energy spectrum and eigenstates of multipartite Hamiltonians, variational search of a tensor network in the form of the multiscale entanglement-renormalization ansatz, preparation of arbitrary states (including highly entangled ones) in the circuit implementation of quantum computation, decomposition of quantum gates, and tomography of quantum states.
提案されたオープンソースソフトウェアとともに開発されたアプローチの普遍性により、複雑な量子アーキテクチャにリーマン最適化を適用することができ、例えばノイズの多い量子システムの最適制御にも適用できる。
関連論文リスト
- Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
近年,変分量子アルゴリズム(VQA)による量子機械学習が注目されている。
本稿では,2QNSCD最適化法を提案する。
ゲート複雑性を持つ量子回路をパラメータ化量子回路と単発量子計測の2倍の精度で用いた,新しい計量テンソルの疎い非バイアス推定器を開発した。
論文 参考訳(メタデータ) (2024-07-18T18:57:29Z) - Fast Quantum Process Tomography via Riemannian Gradient Descent [3.1406146587437904]
制約付き最適化は、量子物理学と量子情報科学の分野において重要な役割を果たす。
量子プロセストモグラフィー(quantum process tomography)は、特定の測定データに基づいて基礎となる量子プロセスを取得することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T16:28:14Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
本稿では,一般に局所的に制約された最適化問題に対する量子インスパイアされたテンソルネットワークに基づくアルゴリズムを提案する。
我々のアルゴリズムは、興味のある問題に対してハミルトニアンを構築し、量子問題に効果的にマッピングする。
本研究は,本手法の有効性と応用の可能性を示すものである。
論文 参考訳(メタデータ) (2022-03-29T05:44:07Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - QGOpt: Riemannian optimization for quantum technologies [0.0]
量子技術における制約付き最適化のためのライブラリであるQGOptを紹介する。
量子ゲート分解と量子トモグラフィーの2つの応用例を示す。
論文 参考訳(メタデータ) (2020-11-03T18:11:53Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
オープン量子システムのダイナミクスに対処するためのアプローチを提案する。
自己回帰変換ニューラルネットワークを用いて量子状態をコンパクトに表現する。
効率的なアルゴリズムは、リウヴィリア超作用素の力学をシミュレートするために開発された。
論文 参考訳(メタデータ) (2020-09-11T18:00:00Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
我々は、量子幾何学的制御問題に対するディープラーニングの適用をレビューし、拡張する。
量子回路合成問題における時間-最適制御の強化について述べる。
我々の研究結果は、時間-最適制御問題に対する機械学習と幾何学的手法を組み合わせた量子制御と量子情報理論の研究者にとって興味深いものである。
論文 参考訳(メタデータ) (2020-06-19T19:12:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。