Heat exchange and fluctuation in Gaussian thermal states in the quantum
realm
- URL: http://arxiv.org/abs/2007.04255v4
- Date: Mon, 9 Nov 2020 13:46:58 GMT
- Title: Heat exchange and fluctuation in Gaussian thermal states in the quantum
realm
- Authors: A R Usha Devi, Sudha, A. K. Rajagopal and A. M. Jayannavar
- Abstract summary: The celebrated exchange fluctuation theorem -- proposed by Jarzynski and W'ozcik -- is explored here for quantum Gaussian states in thermal equilibrium.
We employ Wigner distribution function formalism for quantum states, which exhibits close resemblance with the classcial phase-space trajectory description.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The celebrated exchange fluctuation theorem -- proposed by Jarzynski and
W\'ozcik, (Phys Rev. Lett. 92, 230602 (2004)) for heat exchange between two
systems in thermal equilibrium at different temperatures -- is explored here
for quantum Gaussian states in thermal equilibrium. We employ Wigner
distribution function formalism for quantum states, which exhibits close
resemblance with the classcial phase-space trajectory description, to arrive at
this theorem. For two Gaussian states in thermal equilibrium at two different
temperatures kept in contact with each other for a fixed duration of time we
show that the quantum Jarzyinski-W\'ozcik theorem agrees with the corresponding
classical result in the limit \hbar->0.
Related papers
- Diagnosing thermalization dynamics of non-Hermitian quantum systems via GKSL master equations [0.0]
The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos.
We have derived two versions of the Gorini-Kossakowski-Sudarshan-Lindblad master equations describing the non-Hermitian systems.
This finding implies that the recently proposed biorthogonal random matrix theory needs an appropriate revision.
arXiv Detail & Related papers (2024-03-27T11:48:45Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Exchange fluctuation theorems for strongly interacting quantum pumps [0.0]
We derive a general quantum exchange fluctuation theorem for multipartite systems with arbitrary coupling strengths.
The resulting second law of thermodynamics is tighter than the conventional Clausius inequality.
arXiv Detail & Related papers (2022-09-26T18:01:59Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Quantum-classical correspondence principle for heat distribution in
quantum Brownian motion [5.096938986357835]
We study the heat distribution of a relaxation process in the quantum Brownian motion model.
Our research brings justification for the definition of the quantum fluctuating heat via two-point measurements.
arXiv Detail & Related papers (2021-11-22T15:19:49Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - The quantum canonical ensemble in phase space [0.0]
In all regimes, thermal averages of arbitrary observables are evaluated by integrals, as if the thermal Wigner function were a classical distribution.
The extension of the semiclassical approximation for quantum propagators to an imaginary thermal time, bridges the complex intervening region between the high and the low temperature limit.
A variant of the full semiclassical approximation with a real thermal time, though in a doubled phase space, avoids any search for particular trajectories in the evaluation of thermal averages.
arXiv Detail & Related papers (2020-09-23T13:04:12Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.