Diagnosing thermalization dynamics of non-Hermitian quantum systems via GKSL master equations
- URL: http://arxiv.org/abs/2403.18477v2
- Date: Wed, 17 Jul 2024 10:38:38 GMT
- Title: Diagnosing thermalization dynamics of non-Hermitian quantum systems via GKSL master equations
- Authors: Yiting Mao, Peigeng Zhong, Haiqing Lin, Xiaoqun Wang, Shijie Hu,
- Abstract summary: The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos.
We have derived two versions of the Gorini-Kossakowski-Sudarshan-Lindblad master equations describing the non-Hermitian systems.
This finding implies that the recently proposed biorthogonal random matrix theory needs an appropriate revision.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of the eigenstate thermalization hypothesis to non-Hermitian quantum systems has become one of the most important topics in dissipative quantum chaos, recently giving rise to intense debates. The process of thermalization is intricate, involving many time-evolution trajectories in the reduced Hilbert space of the system. By considering two different expansion forms of the density matrices adopted in the biorthogonal and right-state time evolutions, we have derived two versions of the Gorini-Kossakowski-Sudarshan-Lindblad master equations describing the non-Hermitian systems coupled to a bosonic heat bath in thermal equilibrium. By solving the equations, we have identified a sufficient condition for thermalization under both time evolutions, resulting in Boltzmann biorthogonal and right-eigenstate statistics, respectively. This finding implies that the recently proposed biorthogonal random matrix theory needs an appropriate revision. Moreover, we have exemplified the precise dynamics of thermalization and thermodynamic properties with test models.
Related papers
- Asymmetries of thermal processes in open quantum systems [0.0]
An intriguing phenomenon in non-equilibrium quantum thermodynamics is the asymmetry of thermal processes.
We show that the free relaxation to thermal equilibrium follows intrinsically different paths depending on whether the temperature of the system increases (heating up) or decreases (cooling down)
Our theory is exemplified using the recently developed thermal kinematics based on information geometry theory.
arXiv Detail & Related papers (2024-06-28T11:07:21Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Quantum stochastic thermodynamics: A semiclassical theory in phase space [0.0]
A formalism for quantum many-body systems is proposed through a semiclassical treatment in phase space.
We use a Fokker-Planck equation as the dynamics at the mesoscopic level.
We define thermodynamic quantities based on the trajectories of the phase-space distribution.
arXiv Detail & Related papers (2023-03-10T14:12:14Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum systems correlated with a finite bath: nonequilibrium dynamics
and thermodynamics [0.0]
We derive a master equation that accounts for system-bath correlations and includes, at a coarse-grained level, a dynamically evolving bath.
Our work paves the way for studying a variety of nanoscale quantum technologies including engines, refrigerators, or heat pumps.
arXiv Detail & Related papers (2020-08-05T15:19:29Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Heat exchange and fluctuation in Gaussian thermal states in the quantum
realm [0.0]
The celebrated exchange fluctuation theorem -- proposed by Jarzynski and W'ozcik -- is explored here for quantum Gaussian states in thermal equilibrium.
We employ Wigner distribution function formalism for quantum states, which exhibits close resemblance with the classcial phase-space trajectory description.
arXiv Detail & Related papers (2020-07-08T16:45:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.