Quantum-classical correspondence principle for heat distribution in
quantum Brownian motion
- URL: http://arxiv.org/abs/2111.11271v1
- Date: Mon, 22 Nov 2021 15:19:49 GMT
- Title: Quantum-classical correspondence principle for heat distribution in
quantum Brownian motion
- Authors: Jin-Fu Chen and Tian Qiu and H. T. Quan
- Abstract summary: We study the heat distribution of a relaxation process in the quantum Brownian motion model.
Our research brings justification for the definition of the quantum fluctuating heat via two-point measurements.
- Score: 5.096938986357835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Brownian motion, described by the Caldeira-Leggett model, brings
insights to understand phenomena and essence of quantum thermodynamics,
especially the quantum work and heat associated with their classical
counterparts. By employing the phase-space formulation approach, we study the
heat distribution of a relaxation process in the quantum Brownian motion model.
The analytical result of the characteristic function of heat is obtained at any
relaxation time with an arbitrary friction coefficient. By taking the classical
limit, such a result approaches the heat distribution of the classical Brownian
motion described by the Langevin equation, indicating the quantum-classical
correspondence principle for heat distribution. We also demonstrate that the
fluctuating heat at any relaxation time satisfies the exchange fluctuation
theorem of heat, and its long-time limit reflects complete thermalization of
the system. Our research brings justification for the definition of the quantum
fluctuating heat via two-point measurements.
Related papers
- Quantum thermodynamics of the Caldeira-Leggett model with non-equilibrium Gaussian reservoirs [0.0]
We introduce a non-equilibrium version of the Caldeira-Leggett model in which a quantum particle is strongly coupled to a set of engineered reservoirs.
Strongly displaced/squeezed reservoirs can be used to generate an effective time dependence in the system Hamiltonian.
We show the quantum-classical correspondence between the heat statistics in the non-equilibrium Caldeira-Leggett model and the statistics of a classical Langevin particle under the action of squeezed and displaced colored noises.
arXiv Detail & Related papers (2024-04-30T21:41:34Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - First Law of Quantum Thermodynamics in a Driven Open Two-Level System [0.0]
We show how contributions originally assigned to dissipation in the Lindblad equation can become coherent part assigned to work.
Our results illustrate the trajectory-dependent character of heat and work, and how contributions originally assigned to dissipation can become coherent part assigned to work.
arXiv Detail & Related papers (2021-04-21T18:00:02Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z) - Heat exchange and fluctuation in Gaussian thermal states in the quantum
realm [0.0]
The celebrated exchange fluctuation theorem -- proposed by Jarzynski and W'ozcik -- is explored here for quantum Gaussian states in thermal equilibrium.
We employ Wigner distribution function formalism for quantum states, which exhibits close resemblance with the classcial phase-space trajectory description.
arXiv Detail & Related papers (2020-07-08T16:45:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.