論文の概要: PIE-NET: Parametric Inference of Point Cloud Edges
- arxiv url: http://arxiv.org/abs/2007.04883v2
- Date: Sun, 25 Oct 2020 15:25:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 04:42:17.648546
- Title: PIE-NET: Parametric Inference of Point Cloud Edges
- Title(参考訳): PIE-NET: ポイントクラウドエッジのパラメトリック推論
- Authors: Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali
Mahdavi-Amiri, Hao Zhang
- Abstract要約: 我々は3Dポイントクラウドデータの特徴エッジを堅牢に識別するエンドツーエンドの学習技術を紹介した。
私たちのディープニューラルネットワークは、PIE-NETと呼ばれ、エッジのパラメトリック推論のために訓練されています。
- 参考スコア(独自算出の注目度): 40.27043782820615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an end-to-end learnable technique to robustly identify feature
edges in 3D point cloud data. We represent these edges as a collection of
parametric curves (i.e.,lines, circles, and B-splines). Accordingly, our deep
neural network, coined PIE-NET, is trained for parametric inference of edges.
The network relies on a "region proposal" architecture, where a first module
proposes an over-complete collection of edge and corner points, and a second
module ranks each proposal to decide whether it should be considered. We train
and evaluate our method on the ABC dataset, a large dataset of CAD models, and
compare our results to those produced by traditional (non-learning) processing
pipelines, as well as a recent deep learning based edge detector (EC-NET). Our
results significantly improve over the state-of-the-art from both a
quantitative and qualitative standpoint.
- Abstract(参考訳): 3Dポイントクラウドデータの特徴エッジを堅牢に識別するエンドツーエンドの学習技術を導入する。
我々はこれらの辺をパラメトリック曲線(ライン、円、bスプライン)の集合として表現する。
したがって、私たちのディープニューラルネットワークであるPIE-NETは、エッジのパラメトリック推論のために訓練されている。
ネットワークは"リージョン提案"アーキテクチャに依存しており、第1のモジュールがエッジとコーナーポイントの過剰なコレクションを提案し、第2のモジュールが各提案をランク付けして検討すべきかどうかを決定する。
我々は,cadモデルの大規模データセットであるabcデータセット上で,この手法をトレーニングし,評価し,従来の(非学習)処理パイプラインや最近のディープラーニングベースのエッジ検出器(ec-net)による結果と比較した。
その結果,定量的,定性的な両面から,最先端技術よりも大幅に向上した。
関連論文リスト
- Split-and-Fit: Learning B-Reps via Structure-Aware Voronoi Partitioning [50.684254969269546]
本稿では,3次元CADモデルのバウンダリ表現(B-Reps)を取得する新しい手法を提案する。
各パーティション内に1つのプリミティブを導出するために空間分割を適用する。
我々のネットワークはニューラルなボロノイ図でNVD-Netと呼ばれ、訓練データからCADモデルのボロノイ分割を効果的に学習できることを示す。
論文 参考訳(メタデータ) (2024-06-07T21:07:49Z) - 3D Neural Edge Reconstruction [61.10201396044153]
本研究では,線と曲線に焦点をあてて3次元エッジ表現を学習する新しい手法であるEMAPを紹介する。
多視点エッジマップから無符号距離関数(UDF)の3次元エッジ距離と方向を暗黙的に符号化する。
この神経表現の上に、推定されたエッジ点とその方向から3次元エッジを頑健に抽象化するエッジ抽出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:23:51Z) - PointResNet: Residual Network for 3D Point Cloud Segmentation and
Classification [18.466814193413487]
ポイントクラウドのセグメンテーションと分類は、3Dコンピュータビジョンの主要なタスクである。
本稿では,残差ブロックベースアプローチであるPointResNetを提案する。
我々のモデルは、セグメント化と分類タスクのためのディープニューラルネットワークを用いて、3Dポイントを直接処理する。
論文 参考訳(メタデータ) (2022-11-20T17:39:48Z) - Explaining Deep Neural Networks for Point Clouds using Gradient-based
Visualisations [1.2891210250935146]
本研究では,非構造化3次元データの分類を目的としたネットワークの粗い視覚的説明を生成する手法を提案する。
提案手法では,最終特徴写像層に逆流する勾配を用いて,これらの値を入力点クラウド内の対応する点の寄与としてマップする。
このアプローチの汎用性は、シングルオブジェクトネットワークのPointNet、PointNet++、DGCNN、a'scene'ネットワークのVoteNetなど、さまざまなポイントクラウド分類ネットワークでテストされている。
論文 参考訳(メタデータ) (2022-07-26T15:42:08Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
エッジ生成(VE-PCN)を利用した点雲補完のためのボクセルネットワークを開発した。
まず点雲を正規のボクセル格子に埋め込み、幻覚した形状のエッジの助けを借りて完全な物体を生成する。
この分離されたアーキテクチャとマルチスケールのグリッド機能学習は、より現実的な表面上の詳細を生成することができる。
論文 参考訳(メタデータ) (2021-08-23T05:10:29Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDescは、ロバストポイントクラウド登録のためのポイント記述子を学習するための教師なしの方法である。
学習した記述子は既存の教師なし手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2021-08-05T17:11:08Z) - Learning point embedding for 3D data processing [2.12121796606941]
現在の点ベース法は本質的に空間関係処理ネットワークである。
PE-Netは高次元空間における点雲の表現を学習する。
実験によると、PE-Netは複数の挑戦的なデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-07-19T00:25:28Z) - Recalibration of Neural Networks for Point Cloud Analysis [3.7814216736076434]
3Dポイントクラウドのためのディープニューラルネットワーク上での再校正モジュールを導入する。
提案モジュールを3次元ポイントクラウド解析のための3つの最先端ネットワークに組み込むことで,提案モジュールのメリットと汎用性を実証する。
第2の実験では,アルツハイマー病の診断における再校正ブロックの利点について検討した。
論文 参考訳(メタデータ) (2020-11-25T17:14:34Z) - Refinement of Predicted Missing Parts Enhance Point Cloud Completion [62.997667081978825]
点雲完了は、部分的な観測から3次元形状の点集合表現を用いて完全な幾何学を予測するタスクである。
従来のアプローチでは、不完全点集合によって供給されるエンコーダ・デコーダモデルにより、点雲全体を直接推定するニューラルネットワークが提案されていた。
本稿では、欠落した幾何を計算し、既知の入力と予測点クラウドを融合することに焦点を当てたエンドツーエンドニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-08T22:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。