論文の概要: Impact of Legal Requirements on Explainability in Machine Learning
- arxiv url: http://arxiv.org/abs/2007.05479v1
- Date: Fri, 10 Jul 2020 16:57:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 21:22:49.659356
- Title: Impact of Legal Requirements on Explainability in Machine Learning
- Title(参考訳): 機械学習における説明可能性に及ぼす法的要件の影響
- Authors: Adrien Bibal, Michael Lognoul, Alexandre de Streel and Beno\^it
Fr\'enay
- Abstract要約: 本研究では,私的および公的な意思決定に課される説明義務と,機械学習技術による実施方法について分析する。
特に、欧州の法律が課す説明可能性の要件と機械学習(ML)モデルへの影響について分析した。
- 参考スコア(独自算出の注目度): 63.24965775030674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The requirements on explainability imposed by European laws and their
implications for machine learning (ML) models are not always clear. In that
perspective, our research analyzes explanation obligations imposed for private
and public decision-making, and how they can be implemented by machine learning
techniques.
- Abstract(参考訳): 欧州の法律が課した説明可能性の要件と機械学習(ML)モデルへの含意は必ずしも明確ではない。
そこで本研究では,私的および公的な意思決定に課される説明義務と,それを機械学習によってどのように実施できるかを分析する。
関連論文リスト
- Verification of Machine Unlearning is Fragile [48.71651033308842]
両タイプの検証戦略を回避できる2つの新しい非学習プロセスを導入する。
この研究は、機械学習検証の脆弱性と限界を強調し、機械学習の安全性に関するさらなる研究の道を開く。
論文 参考訳(メタデータ) (2024-08-01T21:37:10Z) - UnUnlearning: Unlearning is not sufficient for content regulation in advanced generative AI [50.61495097098296]
大規模言語モデル(LLM)におけるアンラーニングのパラダイムを再考する。
未学習の概念を導入し、未学習の知識を文脈内で再導入する。
我々は、不寛容な知識に対するコンテンツフィルタリングが不可欠であり、正確な未学習スキームでさえ、効果的なコンテンツ規制には不十分であると主張している。
論文 参考訳(メタデータ) (2024-06-27T10:24:35Z) - LLMs for XAI: Future Directions for Explaining Explanations [50.87311607612179]
既存のXAIアルゴリズムを用いて計算した説明の精細化に着目する。
最初の実験とユーザスタディは、LLMがXAIの解釈可能性とユーザビリティを高めるための有望な方法を提供することを示唆している。
論文 参考訳(メタデータ) (2024-05-09T19:17:47Z) - Position Paper: Bridging the Gap Between Machine Learning and Sensitivity Analysis [9.191045750996526]
我々は、機械学習モデル(ML)の解釈を感度分析(SA)の一形態と見なすことができると論じている。
我々は、MLにおける説明の統一的なSAベースビューの利点と、関連する作業の完全信用の必要性に注意を払っている。
論文 参考訳(メタデータ) (2023-12-20T17:59:11Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Unveiling the Potential of Counterfactuals Explanations in Employability [0.0]
本稿では,機械学習アルゴリズムに関わる雇用性関連問題に対して,その対策が適用可能であることを示す。
提示されたユースケースは、説明として反事実の応用以上のものだ。
論文 参考訳(メタデータ) (2023-05-17T09:13:53Z) - Explainable Machine Learning for Fraud Detection [0.47574189356217006]
大規模なデータセットの処理をサポートする機械学習の応用は、金融サービスを含む多くの業界で有望である。
本稿では,監視モデルと非監視モデルの両方において,適切なバックグラウンドデータセットとランタイムトレードオフの選択を検討し,リアルタイム不正検出の領域における説明可能性について検討する。
論文 参考訳(メタデータ) (2021-05-13T14:12:02Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - Understanding Interpretability by generalized distillation in Supervised
Classification [3.5473853445215897]
最近の解釈戦略は、複雑な機械学習モデルの根底にある決定メカニズムの人間の理解に焦点を当てている。
本稿では,他のMLモデルと相対的に定義される解釈・蒸留式を提案する。
MNIST、Fashion-MNIST、Stanford40データセットに関する提案フレームワークの評価を行った。
論文 参考訳(メタデータ) (2020-12-05T17:42:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。