論文の概要: Engineering the Law-Machine Learning Translation Problem: Developing Legally Aligned Models
- arxiv url: http://arxiv.org/abs/2504.16969v1
- Date: Wed, 23 Apr 2025 13:41:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.105165
- Title: Engineering the Law-Machine Learning Translation Problem: Developing Legally Aligned Models
- Title(参考訳): 法・機械学習翻訳問題の工学--法定モデルの開発
- Authors: Mathias Hanson, Gregory Lewkowicz, Sam Verboven,
- Abstract要約: 本稿では,機械学習モデル開発において,法的および機械学習技術分析を統合した5段階の学際フレームワークを提案する。
このフレームワークは、法的に整合した方法でMLモデルを設計し、法的に妥当なハイパフォーマンスモデルを特定することを容易にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Organizations developing machine learning-based (ML) technologies face the complex challenge of achieving high predictive performance while respecting the law. This intersection between ML and the law creates new complexities. As ML model behavior is inferred from training data, legal obligations cannot be operationalized in source code directly. Rather, legal obligations require "indirect" operationalization. However, choosing context-appropriate operationalizations presents two compounding challenges: (1) laws often permit multiple valid operationalizations for a given legal obligation-each with varying degrees of legal adequacy; and, (2) each operationalization creates unpredictable trade-offs among the different legal obligations and with predictive performance. Evaluating these trade-offs requires metrics (or heuristics), which are in turn difficult to validate against legal obligations. Current methodologies fail to fully address these interwoven challenges as they either focus on legal compliance for traditional software or on ML model development without adequately considering legal complexities. In response, we introduce a five-stage interdisciplinary framework that integrates legal and ML-technical analysis during ML model development. This framework facilitates designing ML models in a legally aligned way and identifying high-performing models that are legally justifiable. Legal reasoning guides choices for operationalizations and evaluation metrics, while ML experts ensure technical feasibility, performance optimization and an accurate interpretation of metric values. This framework bridges the gap between more conceptual analysis of law and ML models' need for deterministic specifications. We illustrate its application using a case study in the context of anti-money laundering.
- Abstract(参考訳): 機械学習ベース(ML)技術を開発する組織は、法律を尊重しながら高い予測性能を達成するという複雑な課題に直面している。
このMLと法則の交わりは、新しい複雑さを生み出す。
MLモデルの振る舞いはトレーニングデータから推測されるため、法的義務を直接ソースコードで運用することはできない。
むしろ、法的義務は「間接的な」運用を必要とする。
しかし, 文脈に適した事業化を選択することは, 1) 法が与えられた法的義務の複数の有効な事業化を適度な度合いで許可すること, 2) それぞれの事業化は, 異なる法的義務と予測性能の間で予測不可能なトレードオフを生じること, の2つの複合的な課題を生じさせる。
これらのトレードオフを評価するにはメトリクス(あるいはヒューリスティックス)が必要です。
現在の方法論は、従来のソフトウェアに対する法的コンプライアンスや、法的複雑さを十分に考慮せずにMLモデル開発に重点を置いているため、これらの課題に完全に対処することができない。
そこで本研究では,MLモデル開発において,法的およびML技術分析を統合した5段階の学際フレームワークを提案する。
このフレームワークは、法的に整合した方法でMLモデルを設計し、法的に妥当なハイパフォーマンスモデルを特定することを容易にする。
法的な推論は、運用と評価のメトリクスの選択を導く一方で、MLの専門家は、技術的実現可能性、パフォーマンスの最適化、メトリック値の正確な解釈を保証する。
このフレームワークは、より概念的な法則分析と決定論的仕様に対するMLモデルの必要性のギャップを埋める。
反マネーロンダリングの文脈におけるケーススタディを用いて,その応用を解説する。
関連論文リスト
- LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBenchは、中国の法律領域でLLMエージェントを評価するために特別に設計されたベンチマークである。
LegalAgentBenchには、現実世界の法的シナリオから17のコーパスが含まれており、外部知識と対話するための37のツールを提供している。
論文 参考訳(メタデータ) (2024-12-23T04:02:46Z) - COMPL-AI Framework: A Technical Interpretation and LLM Benchmarking Suite for the EU Artificial Intelligence Act [40.233017376716305]
EUの人工知能法(AI Act)は、AI開発の責任を負うための重要なステップである。
明確な技術的解釈がなく、モデルのコンプライアンスを評価するのが難しい。
この研究は、この法律の最初の技術的解釈からなる包括的枠組みであるComple-AIを提示する。
論文 参考訳(メタデータ) (2024-10-10T14:23:51Z) - Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration [27.047809869136458]
大きな言語モデル(LLM)は、法的理論を完全に理解し、法的推論タスクを実行するのに苦労する可能性がある。
法理論と推論能力に対するLLMの理解をよりよく評価するための課題(電荷予測の解釈)を導入する。
複雑な法的推論機能を改善するためのマルチエージェントフレームワークも提案する。
論文 参考訳(メタデータ) (2024-10-03T14:15:00Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - Optimizing Numerical Estimation and Operational Efficiency in the Legal Domain through Large Language Models [13.067312163677933]
本稿では,Large Language Modelsと特殊設計のプロンプトを統合して,法的な人工知能(LegalAI)アプリケーションにおける精度要件に対処する手法を提案する。
本手法を検証するために,精度指向の LegalAI タスクに適したキュレートデータセットを提案する。
論文 参考訳(メタデータ) (2024-07-26T18:46:39Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
本稿では,税法の適用におけるLarge Language Models(LLM)の機能について考察する。
実験では,その後のOpenAIモデルリリースにおけるパフォーマンスの向上とともに,新たな法的理解能力を実証した。
発見は、特に拡張の促進と正しい法的文書と組み合わせることで、高いレベルの精度で実行可能であるが、専門家の税務弁護士レベルではまだ実行できないことを示している。
論文 参考訳(メタデータ) (2023-06-12T12:40:48Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - Impact of Legal Requirements on Explainability in Machine Learning [63.24965775030674]
本研究では,私的および公的な意思決定に課される説明義務と,機械学習技術による実施方法について分析する。
特に、欧州の法律が課す説明可能性の要件と機械学習(ML)モデルへの影響について分析した。
論文 参考訳(メタデータ) (2020-07-10T16:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。