論文の概要: Are Hyperbolic Representations in Graphs Created Equal?
- arxiv url: http://arxiv.org/abs/2007.07698v1
- Date: Wed, 15 Jul 2020 14:14:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 05:01:44.285144
- Title: Are Hyperbolic Representations in Graphs Created Equal?
- Title(参考訳): グラフにおける双曲表現は等しくなるか?
- Authors: Max Kochurov, Sergey Ivanov, Eugeny Burnaev
- Abstract要約: 我々は、非ユークリッド埋め込みがグラフ学習タスクに常に有用であるかどうか検討する。
まず、ゼロ曲率で最適化プロセスに関連する既存のモデルの問題を解く。
いくつかのグラフ表現学習タスクにおいて,グラフを多様体に埋め込む手法を評価する。
- 参考スコア(独自算出の注目度): 1.80476943513092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently there was an increasing interest in applications of graph neural
networks in non-Euclidean geometry; however, are non-Euclidean representations
always useful for graph learning tasks? For different problems such as node
classification and link prediction we compute hyperbolic embeddings and
conclude that for tasks that require global prediction consistency it might be
useful to use non-Euclidean embeddings, while for other tasks Euclidean models
are superior. To do so we first fix an issue of the existing models associated
with the optimization process at zero curvature. Current hyperbolic models deal
with gradients at the origin in ad-hoc manner, which is inefficient and can
lead to numerical instabilities. We solve the instabilities of
kappa-Stereographic model at zero curvature cases and evaluate the approach of
embedding graphs into the manifold in several graph representation learning
tasks.
- Abstract(参考訳): 近年、非ユークリッド幾何学におけるグラフニューラルネットワークの応用への関心が高まっているが、非ユークリッド表現はグラフ学習タスクに常に有用か?
ノード分類やリンク予測のような様々な問題に対して双曲的埋め込みを計算し、大域的予測の一貫性を必要とするタスクでは非ユークリッド埋め込みを使うのが有用であり、他のタスクではユークリッドモデルの方が優れていると結論づける。
そのため、私たちはまず、ゼロ曲率で最適化プロセスに関連する既存のモデルの問題を修正します。
現在の双曲的モデルは、非効率であり、数値的な不安定を生じさせる、アドホックな方法の起源の勾配を扱う。
ゼロ曲率の場合のKappa-Stereographicモデルの不安定性を解き、グラフ表現学習タスクにおけるグラフの多様体への埋め込みのアプローチを評価する。
関連論文リスト
- Shedding Light on Problems with Hyperbolic Graph Learning [2.3743504594834635]
グラフ機械学習文学における近年の論文は、双曲表現学習に多くのアプローチを導入している。
現在、双曲グラフ表現学習の分野を注意深く見ていく。
多くの論文では,アルゴリズム構築時にベースラインの厳密な提示に失敗し,ミスリード指標を用いてグラフデータセットの幾何を定量化している。
論文 参考訳(メタデータ) (2024-11-11T03:12:41Z) - Graph data augmentation with Gromow-Wasserstein Barycenters [0.0]
非ユークリッド空間で動作するグラフに対する新たな拡張戦略が提案されている。
非ユークリッド距離、特にグロモウ=ワッサーシュタイン距離は、グラフンのより良い近似をもたらす。
このフレームワークはまた、異なるグラフオン推定アプローチを検証する手段を提供する。
論文 参考訳(メタデータ) (2024-04-12T10:22:55Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Tight and fast generalization error bound of graph embedding in metric
space [54.279425319381374]
非ユークリッド計量空間へのグラフ埋め込みは、既存の有界よりもはるかに少ない訓練データを持つユークリッド空間におけるグラフ埋め込みよりも優れていることを示す。
我々の新しい上限は、既存の上限よりもかなり強く速く、最大で$R$と$O(frac1S)$に指数関数できる。
論文 参考訳(メタデータ) (2023-05-13T17:29:18Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
グラフを幾何学グラフとみなす: ノードは基礎となる計量空間からランダムにサンプリングされ、その距離が指定された近傍半径以下であれば任意のノードが接続される。
ソーシャルネットワークでは、コミュニティは密集したサンプル領域としてモデル化でき、ハブはより大きな近傍半径を持つノードとしてモデル化できる。
我々は,未知のサンプリング密度を自己監督的に推定する手法を開発した。
論文 参考訳(メタデータ) (2022-10-15T08:01:08Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
観測結果から複数のネットワークのトポロジを推定する問題を考察する。
これは非パラメトリックなモデルであり、潜在的に異なるサイズのグラフを描画することができる。
論文 参考訳(メタデータ) (2022-02-11T15:20:44Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
ネットワークに価値のあるデータは、幅広いアプリケーションで遭遇し、学習の課題を提起する。
本稿では,2つのクラスタリングアルゴリズムについて述べる。
さらに、グラフ2サンプルテスト問題に対する提案した距離の適用性について検討する。
論文 参考訳(メタデータ) (2021-10-06T13:14:44Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
グラフ隣接行列の後方分布を構築するための新しい非パラメトリックグラフモデルを提案する。
このモデルの利点を,ノード分類,リンク予測,レコメンデーションという3つの異なる問題設定で示す。
論文 参考訳(メタデータ) (2020-06-23T21:10:55Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。