論文の概要: A Framework for Automatic Behavior Generation in Multi-Function Swarms
- arxiv url: http://arxiv.org/abs/2007.08656v1
- Date: Sat, 11 Jul 2020 20:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 12:58:34.690884
- Title: A Framework for Automatic Behavior Generation in Multi-Function Swarms
- Title(参考訳): 多機能群における自動行動生成の枠組み
- Authors: Sondre A. Engebraaten, Jonas Moen, Oleg A. Yakimenko, Kyrre Glette
- Abstract要約: マルチファンクションスワムにおける自動行動生成のためのフレームワークを提案する。
フレームワークは3つの同時タスクでシナリオ上でテストされる。
MAP-elitesの挙動特性に及ぼすノイズの影響について検討した。
- 参考スコア(独自算出の注目度): 1.290382979353427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-function swarms are swarms that solve multiple tasks at once. For
example, a quadcopter swarm could be tasked with exploring an area of interest
while simultaneously functioning as ad-hoc relays. With this type of
multi-function comes the challenge of handling potentially conflicting
requirements simultaneously. Using the Quality-Diversity algorithm MAP-elites
in combination with a suitable controller structure, a framework for automatic
behavior generation in multi-function swarms is proposed. The framework is
tested on a scenario with three simultaneous tasks: exploration, communication
network creation and geolocation of RF emitters. A repertoire is evolved,
consisting of a wide range of controllers, or behavior primitives, with
different characteristics and trade-offs in the different tasks. This
repertoire would enable the swarm to transition between behavior trade-offs
online, according to the situational requirements. Furthermore, the effect of
noise on the behavior characteristics in MAP-elites is investigated. A moderate
number of re-evaluations is found to increase the robustness while keeping the
computational requirements relatively low. A few selected controllers are
examined, and the dynamics of transitioning between these controllers are
explored. Finally, the study develops a methodology for analyzing the makeup of
the resulting controllers. This is done through a parameter variation study
where the importance of individual inputs to the swarm controllers is assessed
and analyzed.
- Abstract(参考訳): 多機能Swarmは複数のタスクを同時に解決するSwarmである。
例えば、クワッドコプターの群れは興味のある領域を探索し、同時にアドホックリレーとして機能する。
このタイプのマルチファンクションでは、潜在的に矛盾する要件を同時に扱うことが課題となる。
品質多様性アルゴリズムMAP-elitesと適切なコントローラ構造を組み合わせることで,マルチファンクションスワムの自動動作生成のためのフレームワークを提案する。
このフレームワークは、RFエミッタの探索、通信ネットワークの作成、位置決めという3つの同時タスクのシナリオでテストされる。
レパートリーが進化し、様々なタスクで異なる特性とトレードオフを持つ幅広いコントローラーまたは行動プリミティブで構成されている。
このレパートリーにより、状況条件に従って、swarmはオンライン上で行動トレードオフを切り替えることができる。
さらに, MAPエリートの挙動特性に及ぼすノイズの影響について検討した。
適度な再評価の回数は、計算要求を比較的低く保ちながら、ロバスト性を高めることが判明した。
選択されたコントローラをいくつか検討し、これらのコントローラ間の遷移のダイナミクスについて検討する。
最後に, 制御器の構成を解析するための方法論を考案した。
これは、Swarmコントローラに対する個々の入力の重要性を評価し分析するパラメータ変動研究を通じて行われる。
関連論文リスト
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
本稿では,行動列上のQ値を出力する批判ネットワークを学習する新しいRLアルゴリズムを提案する。
提案アルゴリズムは,現在および将来の一連の行動の実行結果を学習するために値関数を明示的に訓練することにより,ノイズのある軌道から有用な値関数を学習することができる。
論文 参考訳(メタデータ) (2024-11-19T01:23:52Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
本稿では,様々な知覚タスクの表現を調和させる新しい統一表現RepVFを提案する。
RepVFは、ベクトル場を通じてシーン内の異なるターゲットの構造を特徴付け、シングルヘッドでマルチタスクの学習モデルを可能にする。
RepVF 上に構築された RFTR は,タスク間の固有性を利用したネットワークである。
論文 参考訳(メタデータ) (2024-07-15T16:25:07Z) - An Effective-Efficient Approach for Dense Multi-Label Action Detection [23.100602876056165]
i)時間的依存関係と(ii)共起行動関係を同時に学習する必要がある。
近年のアプローチは階層型トランスフォーマーネットワークによるマルチスケール特徴抽出による時間情報のモデル化である。
我々はこれを階層設計における複数のサブサンプリングプロセスと組み合わせることで、位置情報のさらなる喪失につながると論じている。
論文 参考訳(メタデータ) (2024-06-10T11:33:34Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - ReACT: Reinforcement Learning for Controller Parametrization using
B-Spline Geometries [0.0]
本研究は,N次元B-スプライン測地(BSG)を用いた深部強化学習(DRL)を用いた新しいアプローチを提案する。
本稿では,操作条件に依存する複雑な振る舞いを持つシステムのクラスであるパラメータ変量システムの制御に焦点をあてる。
多数の動作条件に依存するコントローラパラメータをマッピングするために,BSGを導入し,適応処理をより効率的にする。
論文 参考訳(メタデータ) (2024-01-10T16:27:30Z) - CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action
Spaces [9.578169216444813]
本稿では,異なるエージェント間で共有される学習された潜在行動空間を通じて,マルチロボット操作を協調する手法を提案する。
シミュレーションされたマルチロボット操作タスクにおいて本手法を検証し,サンプル効率と学習性能の観点から,従来のベースラインよりも改善したことを示す。
論文 参考訳(メタデータ) (2022-11-28T23:20:47Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
pRotOtypeal taSk corrElaTion guided gaTingAnism (ROSETTA)による連続物体検出のためのフレキシブルなフレームワークを提案する。
具体的には、統一されたフレームワークはすべてのタスクで共有され、タスク対応ゲートは特定のタスクのサブモデルを自動的に選択するために導入されます。
COCO-VOC、KITTI-Kitchen、VOCのクラスインクリメンタル検出、および4つのタスクの逐次学習の実験により、ROSETTAが最先端のパフォーマンスを得ることが示された。
論文 参考訳(メタデータ) (2022-05-06T07:31:28Z) - Bayesian optimization of distributed neurodynamical controller models
for spatial navigation [1.9249287163937971]
我々はニューロシュワームコントローラを導入し、エージェントベースの相互作用を神経ネットワークの相互作用に類似してモデル化する。
この複雑さは、従来のSwarmモデルの研究に一般的に使用される安定性、制御可能性、性能の線形解析を妨げる。
ベイズ最適化に基づく自律型マルチエージェントシステムの動的コントローラモデルをチューニングするためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-31T21:43:06Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
強い生成デコーダが存在しない場合、アンタングル化は必ずしも制御性を意味するものではない。
VAEデコーダに対する潜伏空間の構造は、異なる属性を操作するための生成モデルの能力を高める上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-08-01T18:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。