論文の概要: Deep Learning Based Brain Tumor Segmentation: A Survey
- arxiv url: http://arxiv.org/abs/2007.09479v3
- Date: Wed, 17 Nov 2021 11:21:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 05:59:18.638501
- Title: Deep Learning Based Brain Tumor Segmentation: A Survey
- Title(参考訳): 深層学習に基づく脳腫瘍切除 : アンケート調査
- Authors: Zhihua Liu, Lei Tong, Zheheng Jiang, Long Chen, Feixiang Zhou, Qianni
Zhang, Xiangrong Zhang, Yaochu Jin, Huiyu Zhou
- Abstract要約: 脳腫瘍のセグメンテーションは、医療画像解析において最も難しい問題の一つである。
深層学習法は様々なコンピュータビジョン問題の解法において有望な性能を示した。
この調査では100以上の科学論文が選定され議論されている。
- 参考スコア(独自算出の注目度): 26.933777009547047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumor segmentation is one of the most challenging problems in medical
image analysis. The goal of brain tumor segmentation is to generate accurate
delineation of brain tumor regions. In recent years, deep learning methods have
shown promising performance in solving various computer vision problems, such
as image classification, object detection and semantic segmentation. A number
of deep learning based methods have been applied to brain tumor segmentation
and achieved promising results. Considering the remarkable breakthroughs made
by state-of-the-art technologies, we use this survey to provide a comprehensive
study of recently developed deep learning based brain tumor segmentation
techniques. More than 100 scientific papers are selected and discussed in this
survey, extensively covering technical aspects such as network architecture
design, segmentation under imbalanced conditions, and multi-modality processes.
We also provide insightful discussions for future development directions.
- Abstract(参考訳): 脳腫瘍のセグメンテーションは、画像解析において最も難しい問題の1つである。
脳腫瘍セグメンテーションの目標は、脳腫瘍領域の正確なデラインを作成することである。
近年,画像分類,オブジェクト検出,セマンティックセグメンテーションなど,様々なコンピュータビジョン問題の解法において,ディープラーニング手法が有望な性能を示した。
深層学習に基づく多くの手法が脳腫瘍セグメンテーションに適用され、有望な結果を得た。
最先端技術による顕著なブレークスルーを考慮し,近年開発された深層学習に基づく脳腫瘍セグメンテーション技術に関する包括的研究を行う。
本調査では100以上の科学的論文が選定され,ネットワークアーキテクチャ設計,不均衡条件下でのセグメンテーション,マルチモダリティプロセスなどの技術的側面を幅広く取り上げている。
また、将来の開発方向性について洞察に富んだ議論も行います。
関連論文リスト
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
脳腫瘍は生命を脅かす問題であり、人間の身体の正常な機能を損なう。
医用画像におけるディープラーニングアルゴリズムの使用により、脳腫瘍の分類と診断が大幅に改善された。
本研究の目的は,機械学習を用いた脳腫瘍検出のための予測システムを開発することである。
論文 参考訳(メタデータ) (2024-07-15T11:30:40Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
脳腫瘍のセグメンテーションは、医療画像解析において重要な課題であり、脳腫瘍患者の診断と治療計画を支援する。
様々な深層学習技術がこの分野で大きな進歩を遂げてきたが、脳腫瘍形態の複雑で変動的な性質のため、精度の面ではまだ限界に直面している。
本稿では,脳腫瘍の正確なセグメンテーションにおける課題を解決するために,新しいハイブリッドマルチヘッド注意型U-Netアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:46:26Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
3つのコアアーキテクチャに基づく11種類のユニークなバリエーションからなるアンサンブル手法を提案する。
その結果,異なるアーキテクチャを組み合わせるアンサンブルアプローチが単一モデルより優れていることがわかった。
これらの結果は、脳腫瘍を正確に分類する上での、調整された深層学習技術の可能性を裏付けるものである。
論文 参考訳(メタデータ) (2023-08-14T15:34:22Z) - The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting [50.01582455004711]
脳腫瘍患者の場合、画像取得の時系列は通常、すでに病理的なスキャンから始まる。
多くのアルゴリズムは、健康な脳を分析し、病変を特徴とする画像の保証を提供しないように設計されている。
例えば、脳解剖学のパーセレーション、組織セグメンテーション、脳抽出のアルゴリズムがある。
そこで参加者は、損傷した脳から健康な脳スキャンを合成するための塗装技術を探る。
論文 参考訳(メタデータ) (2023-05-15T20:17:03Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Brain Tumor Classification by Cascaded Multiscale Multitask Learning
Framework Based on Feature Aggregation [12.256043883052506]
MRI画像における脳腫瘍解析は、誤診が死につながる可能性があるため、重要かつ困難な問題である。
本稿では、MRI画像の強調と腫瘍領域の検出を含むフレームワークを用いて、MRI画像中の脳腫瘍を同時にセグメント化、分類するアプローチを提案する。
主観的および客観的な結果は,評価指標に基づくセグメンテーションと分類結果は,最先端技術に比較してよいか,あるいは同等であることを示している。
論文 参考訳(メタデータ) (2021-12-28T22:49:44Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge [53.48285637256203]
iSeg 2019 Challengeは、さまざまなプロトコル/スキャナーを持つ複数のサイトから6ヶ月の乳児のセットを提供する。
執筆時点では、iSeg 2019には30の自動セグメンテーションメソッドが参加している。
私たちは、パイプライン/実装の詳細を説明し、実験結果を示し、脳全体、関心領域、ジャラルランドマークカーブの観点からパフォーマンスを評価することで、上位8チームについてレビューします。
論文 参考訳(メタデータ) (2020-07-04T13:39:48Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z) - Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs [2.4736005621421686]
マルチモーダル脳腫瘍セグメンテーションチャレンジ(BraTS)は、3次元MRI脳腫瘍セグメンテーションの自動化方法を改善するために研究者を結集させる。
この手法をBraTS 2019の課題として評価した。
論文 参考訳(メタデータ) (2020-01-06T07:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。