Beyond the Worst-Case Analysis of Algorithms (Introduction)
- URL: http://arxiv.org/abs/2007.13241v1
- Date: Sun, 26 Jul 2020 23:18:19 GMT
- Title: Beyond the Worst-Case Analysis of Algorithms (Introduction)
- Authors: Tim Roughgarden
- Abstract summary: Worst-case analysis summarizes the performance profile of an algorithm by its worst performance on any input of a given size.
This chapter surveys several alternatives to worst-case analysis that are discussed in detail later in the book.
- Score: 13.965228845332865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the primary goals of the mathematical analysis of algorithms is to
provide guidance about which algorithm is the "best" for solving a given
computational problem. Worst-case analysis summarizes the performance profile
of an algorithm by its worst performance on any input of a given size,
implicitly advocating for the algorithm with the best-possible worst-case
performance. Strong worst-case guarantees are the holy grail of algorithm
design, providing an application-agnostic certification of an algorithm's
robustly good performance. However, for many fundamental problems and
performance measures, such guarantees are impossible and a more nuanced
analysis approach is called for. This chapter surveys several alternatives to
worst-case analysis that are discussed in detail later in the book.
Related papers
- Absolute Ranking: An Essential Normalization for Benchmarking Optimization Algorithms [0.0]
evaluating performance across optimization algorithms on many problems presents a complex challenge due to the diversity of numerical scales involved.
This paper extensively explores the problem, making a compelling case to underscore the issue and conducting a thorough analysis of its root causes.
Building on this research, this paper introduces a new mathematical model called "absolute ranking" and a sampling-based computational method.
arXiv Detail & Related papers (2024-09-06T00:55:03Z) - A General Online Algorithm for Optimizing Complex Performance Metrics [5.726378955570775]
We introduce and analyze a general online algorithm that can be used in a straightforward way with a variety of complex performance metrics in binary, multi-class, and multi-label classification problems.
The algorithm's update and prediction rules are appealingly simple and computationally efficient without the need to store any past data.
arXiv Detail & Related papers (2024-06-20T21:24:47Z) - Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm [4.0814527055582746]
It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated.
evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons.
arXiv Detail & Related papers (2023-09-04T06:32:02Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
The expected improvement (EI) algorithm is one of the most popular strategies for optimization under uncertainty.
We propose a variant of EI with a standard incumbent defined via the GP predictive mean.
We show that our algorithm converges, and achieves a cumulative regret bound of $mathcal O(gamma_TsqrtT)$.
arXiv Detail & Related papers (2022-03-15T13:17:53Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Data-driven Algorithm Design [21.39493074700162]
Data driven algorithm design is an important aspect of modern data science and algorithm design.
A small tweak to the parameters can cause a cascade of changes in the algorithm's behavior.
We provide strong computational and statistical performance guarantees for batch and online scenarios.
arXiv Detail & Related papers (2020-11-14T00:51:57Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.