On Hyperparameter Optimization of Machine Learning Algorithms: Theory
and Practice
- URL: http://arxiv.org/abs/2007.15745v3
- Date: Wed, 5 Oct 2022 03:06:52 GMT
- Title: On Hyperparameter Optimization of Machine Learning Algorithms: Theory
and Practice
- Authors: Li Yang, Abdallah Shami
- Abstract summary: We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms.
This paper will help industrial users, data analysts, and researchers to better develop machine learning models.
- Score: 10.350337750192997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning algorithms have been used widely in various applications and
areas. To fit a machine learning model into different problems, its
hyper-parameters must be tuned. Selecting the best hyper-parameter
configuration for machine learning models has a direct impact on the model's
performance. It often requires deep knowledge of machine learning algorithms
and appropriate hyper-parameter optimization techniques. Although several
automatic optimization techniques exist, they have different strengths and
drawbacks when applied to different types of problems. In this paper,
optimizing the hyper-parameters of common machine learning models is studied.
We introduce several state-of-the-art optimization techniques and discuss how
to apply them to machine learning algorithms. Many available libraries and
frameworks developed for hyper-parameter optimization problems are provided,
and some open challenges of hyper-parameter optimization research are also
discussed in this paper. Moreover, experiments are conducted on benchmark
datasets to compare the performance of different optimization methods and
provide practical examples of hyper-parameter optimization. This survey paper
will help industrial users, data analysts, and researchers to better develop
machine learning models by identifying the proper hyper-parameter
configurations effectively.
Related papers
- Hyperparameter Optimization in Machine Learning [34.356747514732966]
Hyperparameters are configuration variables controlling the behavior of machine learning algorithms.
The choice of their values determine the effectiveness of systems based on these technologies.
We present a unified treatment of hyperparameter optimization, providing the reader with examples and insights into the state-of-the-art.
arXiv Detail & Related papers (2024-10-30T09:39:22Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
This paper proposes an agent-based collaborative technique for finding near-optimal values for any arbitrary set of hyper- parameters in a machine learning model.
The behavior of the presented model, specifically against the changes in its design parameters, is investigated in both machine learning and global function optimization applications.
arXiv Detail & Related papers (2023-03-03T21:10:17Z) - A Comparative study of Hyper-Parameter Optimization Tools [2.6097538974670935]
We compare the performance of four python libraries, namely Optuna, Hyperopt, Optunity, and sequential model algorithm configuration (SMAC)
We found that Optuna has better performance for CASH problem and NeurIPS black-box optimization challenge.
arXiv Detail & Related papers (2022-01-17T14:49:36Z) - To tune or not to tune? An Approach for Recommending Important
Hyperparameters [2.121963121603413]
We consider building the relationship between the performance of the machine learning models and their hyperparameters to discover the trend and gain insights.
Our results enable users to decide whether it is worth conducting a possibly time-consuming tuning strategy.
arXiv Detail & Related papers (2021-08-30T08:54:58Z) - Search Algorithms for Automated Hyper-Parameter Tuning [1.2233362977312945]
We develop two automated Hyper- Optimization methods, namely grid search and random search, to assess and improve a previous study's performance.
Experiment results show that applying random search and grid search on machine learning algorithms improves accuracy.
arXiv Detail & Related papers (2021-04-29T22:11:52Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
Our framework takes advantage of the analogy between hyperparameter optimization and parameter learning in neural networks (RNNs)
It adapts a well-studied family of online learning algorithms for RNNs to tune hyperparameters and network parameters simultaneously.
This procedure yields systematically better generalization performance compared to standard methods, at a fraction of wallclock time.
arXiv Detail & Related papers (2021-02-15T19:36:18Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.