論文の概要: Additive interaction modelling using I-priors
- arxiv url: http://arxiv.org/abs/2007.15766v4
- Date: Tue, 13 Jun 2023 15:22:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 19:12:02.430842
- Title: Additive interaction modelling using I-priors
- Title(参考訳): I-priorsを用いた付加的相互作用モデリング
- Authors: Wicher Bergsma and Haziq Jamil
- Abstract要約: 相互作用を持つモデルのパプリミティブな仕様を導入し、その利点を2つ挙げる。
スケールパラメータの数を減らし、相互作用のあるモデルの推定を容易にする。
- 参考スコア(独自算出の注目度): 0.571097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Additive regression models with interactions are widely studied in the
literature, using methods such as splines or Gaussian process regression.
However, these methods can pose challenges for estimation and model selection,
due to the presence of many smoothing parameters and the lack of suitable
criteria. We propose to address these challenges by extending the I-prior
methodology (Bergsma, 2020) to multiple covariates, which may be
multidimensional. The I-prior methodology has some advantages over other
methods, such as Gaussian process regression and Tikhonov regularization, both
theoretically and practically. In particular, the I-prior is a proper prior, is
based on minimal assumptions, yields an admissible posterior mean, and
estimation of the scale (or smoothing) parameters can be done using an EM
algorithm with simple E and M steps. Moreover, we introduce a parsimonious
specification of models with interactions, which has two benefits: (i) it
reduces the number of scale parameters and thus facilitates the estimation of
models with interactions, and (ii) it enables straightforward model selection
(among models with different interactions) based on the marginal likelihood.
- Abstract(参考訳): 相互作用を伴う加法回帰モデルは、スプラインやガウス過程回帰のような手法を用いて、文献で広く研究されている。
しかし、これらの手法は、多くの平滑化パラメータの存在と適切な基準の欠如により、推定とモデル選択に困難をもたらす可能性がある。
我々は、I-prior 方法論(Bergsma, 2020)を多次元の複数の共変量に拡張することで、これらの課題に対処することを提案する。
I-プライアー法は、ガウス過程回帰やティホノフ正則化など、理論的にも実用的にも他の方法よりもいくつかの利点がある。
特に、i-prior は適切な pre であり、最小の仮定に基づいており、許容される後方平均を与え、単純な e と m ステップの em アルゴリズムを用いてスケール(または平滑化)パラメータの推定を行うことができる。
さらに,2つの利点がある相互作用を伴うモデルの包括的仕様を導入する。
(i)スケールパラメータの数を減らし、相互作用のあるモデルの推定を容易にし、
(ii)限界確率に基づいて簡単なモデル選択(異なる相互作用を持つモデル)を可能にする。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
モデルベースアーキテクチャでは,各インスタンスの計測領域におけるデータの一貫性を一致させるために,トレーニングされていないフォワードモデル残差ブロックを導入する。
提案手法は,パラメータ感受性が低く,追加データを必要としない統一解を提供し,前方モデルの同時適用と1パスの再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-07T19:02:13Z) - Multi-Response Heteroscedastic Gaussian Process Models and Their
Inference [1.52292571922932]
本稿ではヘテロセダスティック共分散関数のモデリングのための新しいフレームワークを提案する。
後部モデルに近似し, 後部予測モデルを容易にするために, 変分推論を用いる。
提案するフレームワークは,幅広いアプリケーションに対して,堅牢で汎用的なツールを提供する。
論文 参考訳(メタデータ) (2023-08-29T15:06:47Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Towards a Better Understanding of Linear Models for Recommendation [28.422943262159933]
2つの基本回帰および行列分解法に対する閉形式解の導出と解析を行う。
閉形式解に対するパラメータ(ハイパーパラメータ)の探索に新しい学習アルゴリズムを導入する。
実験の結果、基本モデルとその閉形式解は、確かに最先端モデルと非常に競合することを示した。
論文 参考訳(メタデータ) (2021-05-27T04:17:04Z) - Gaussian Process Models with Low-Rank Correlation Matrices for Both
Continuous and Categorical Inputs [0.0]
混合連続および分類ガウス過程モデルにおけるクロス相関行列の低ランク近似を用いた手法を提案する。
低ランク相関(LRC)は、近似の適切なランクを選択することで、問題のパラメータの数に柔軟に適応する能力を提供する。
論文 参考訳(メタデータ) (2020-10-06T09:38:35Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
非線形自己回帰(NARX)成分を特徴とするハイブリッド力学系のモデル群を同定する。
提案手法は, 特定の回帰器を持つ3つの非線形サブモデルからなるSMNARX問題に対して実証される。
論文 参考訳(メタデータ) (2020-09-29T15:00:47Z) - Bayesian System ID: Optimal management of parameter, model, and
measurement uncertainty [0.0]
システム識別(ID)の確率的定式化の頑健さを,スパース,ノイズ,間接データに対して評価した。
従来手法の目的関数面と比較して,ログ後部は幾何学的特性が向上したことを示す。
論文 参考訳(メタデータ) (2020-03-04T22:48:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。