論文の概要: Whole MILC: generalizing learned dynamics across tasks, datasets, and
populations
- arxiv url: http://arxiv.org/abs/2007.16041v2
- Date: Fri, 18 Jun 2021 20:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 19:53:16.691932
- Title: Whole MILC: generalizing learned dynamics across tasks, datasets, and
populations
- Title(参考訳): whole milc:タスク、データセット、人口間の学習ダイナミクスの一般化
- Authors: Usman Mahmood, Md Mahfuzur Rahman, Alex Fedorov, Noah Lewis, Zening
Fu, Vince D. Calhoun, Sergey M. Plis
- Abstract要約: 障害特異的力学の理論は、疾患の早期診断と理解に不可欠である。
本稿では,コンテキストに局所的な相互シーケンス情報を強化する,教師付きトレーニングモデルを提案する。
統合失調症 (i) とアルツハイマー病 (iii) の3つの異なる疾患と4つの異なる研究について本モデルを検証した。
- 参考スコア(独自算出の注目度): 14.99255412075299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Behavioral changes are the earliest signs of a mental disorder, but arguably,
the dynamics of brain function gets affected even earlier. Subsequently,
spatio-temporal structure of disorder-specific dynamics is crucial for early
diagnosis and understanding the disorder mechanism. A common way of learning
discriminatory features relies on training a classifier and evaluating feature
importance. Classical classifiers, based on handcrafted features are quite
powerful, but suffer the curse of dimensionality when applied to large input
dimensions of spatio-temporal data. Deep learning algorithms could handle the
problem and a model introspection could highlight discriminatory
spatio-temporal regions but need way more samples to train. In this paper we
present a novel self supervised training schema which reinforces whole sequence
mutual information local to context (whole MILC). We pre-train the whole MILC
model on unlabeled and unrelated healthy control data. We test our model on
three different disorders (i) Schizophrenia (ii) Autism and (iii) Alzheimers
and four different studies. Our algorithm outperforms existing self-supervised
pre-training methods and provides competitive classification results to
classical machine learning algorithms. Importantly, whole MILC enables
attribution of subject diagnosis to specific spatio-temporal regions in the
fMRI signal.
- Abstract(参考訳): 行動の変化は精神疾患の最も初期の兆候であるが、おそらく脳機能の動態はより早く影響を受ける。
その後、障害特異的力学の時空間構造は、障害機構の早期診断と理解に不可欠である。
識別的特徴を学習する一般的な方法は、分類器を訓練し、特徴の重要性を評価することである。
手作りの特徴に基づく古典的な分類器は非常に強力であるが、時空間データの大きな入力次元に適用すると次元の呪いに苦しむ。
ディープラーニングアルゴリズムはこの問題に対処し、モデルのイントロスペクションは差別的な時空間領域をハイライトするが、トレーニングにはもっと多くのサンプルが必要である。
本稿では,コンテキストに局所的なシーケンス間の相互情報を強化した,新しい自己教師付き学習スキーマを提案する。
milcモデル全体をラベルなし、無関係な健康管理データで事前トレーニングする。
モデルは3つの異なる疾患でテストし
(i)統合失調症
(ii)自閉症、及び
(iii)アルツハイマーと4つの異なる研究。
本アルゴリズムは,既存の自己教師付き事前学習手法よりも優れており,従来の機械学習アルゴリズムに競合分類結果を提供する。
重要なことに、全MILCはfMRI信号の特定の時空間領域への主観的診断の帰属を可能にする。
関連論文リスト
- UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Multi-task Collaborative Pre-training and Individual-adaptive-tokens
Fine-tuning: A Unified Framework for Brain Representation Learning [3.1453938549636185]
協調的事前学習と個別学習を組み合わせた統合フレームワークを提案する。
提案したMCIATはADHD-200データセット上で最先端の診断性能を実現する。
論文 参考訳(メタデータ) (2023-06-20T08:38:17Z) - Self-supervised multimodal neuroimaging yields predictive
representations for a spectrum of Alzheimer's phenotypes [27.331511924585023]
この研究は、マルチモーダル・ニューロイメージングデータから複数の表現を学習するための、新しいマルチスケール協調フレームワークを提案する。
本稿では,情報誘導バイアスの一般的な分類法を提案する。
自己教師型モデルでは,事前トレーニング中にラベルにアクセスすることなく,障害関連脳領域とマルチモーダルリンクを明らかにする。
論文 参考訳(メタデータ) (2022-09-07T01:37:19Z) - Classification of ADHD Patients Using Kernel Hierarchical Extreme
Learning Machine [3.39487428163997]
我々は、脳機能接続のダイナミクスを利用して、医療画像データの特徴をモデル化する。
その結果,最先端モデルよりも優れた分類率を得た。
論文 参考訳(メタデータ) (2022-06-28T05:17:54Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Detecting Autism Spectrum Disorder using Machine Learning [3.2861753207533937]
逐次最小最適化(SMO)ベースのサポートベクトルマシン(SVM)分類器は、他のすべてのベンチマーク機械学習アルゴリズムより優れている。
Relief Attributesアルゴリズムは、ASDデータセットで最も重要な属性を特定するのに最適である。
論文 参考訳(メタデータ) (2020-09-30T08:33:12Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
ASD分類のための4次元畳み込み深層学習手法を提案する。
F1スコアは0.71、F1スコアは0.65であるのに対し、我々は4Dニューラルネットワークと畳み込みリカレントモデルを採用する。
論文 参考訳(メタデータ) (2020-04-21T17:19:06Z) - Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and
Other Tasks [0.1160208922584163]
我々は、これまでコンパイルされた最大のマルチソース機能的MRI(fMRI)コネクトロミックデータセットを備えた畳み込みニューラルネットワーク(CNN)を訓練する。
ASDとTDの制御を区別するディープラーニングモデルは、時間的および小脳の接続に大きく焦点を絞っている。
論文 参考訳(メタデータ) (2020-02-14T17:28:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。