論文の概要: Qudits and high-dimensional quantum computing
- arxiv url: http://arxiv.org/abs/2008.00959v4
- Date: Wed, 11 Nov 2020 15:47:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-07 18:13:17.729752
- Title: Qudits and high-dimensional quantum computing
- Title(参考訳): quditsと高次元量子コンピューティング
- Authors: Yuchen Wang, Zixuan Hu, Barry C. Sanders, and Sabre Kais
- Abstract要約: Quditは従来の2レベルキュービットに代わるマルチレベル計算ユニットである。
このレビューでは、回路構築、アルゴリズム設計、実験方法など、さまざまなトピックをカバーする、quditベースの量子コンピューティングの概要を概説する。
- 参考スコア(独自算出の注目度): 4.2066457491320115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Qudit is a multi-level computational unit alternative to the conventional
2-level qubit. Compared to qubit, qudit provides a larger state space to store
and process information, and thus can provide reduction of the circuit
complexity, simplification of the experimental setup and enhancement of the
algorithm efficiency. This review provides an overview of qudit-based quantum
computing covering a variety of topics ranging from circuit building, algorithm
design, to experimental methods. We first discuss the qudit gate universality
and a variety of qudit gates including the pi/8 gate, the SWAP gate, and the
multi-level-controlled gate. We then present the qudit version of several
representative quantum algorithms including the Deutsch-Jozsa algorithm, the
quantum Fourier transform, and the phase estimation algorithm. Finally we
discuss various physical realizations for qudit computation such as the
photonic platform, iron trap, and nuclear magnetic resonance.
- Abstract(参考訳): Quditは従来の2レベルキュービットに代わるマルチレベル計算ユニットである。
qubitと比較すると、quditは情報を保存および処理するためのより大きな状態空間を提供し、回路の複雑さの低減、実験的なセットアップの簡略化、アルゴリズム効率の向上を提供する。
本稿では、回路構築からアルゴリズム設計、実験手法まで、様々なトピックをカバーするquditベースの量子コンピューティングの概要について述べる。
まず,quditゲートの普遍性と,pi/8ゲート,SWAPゲート,マルチレベル制御ゲートなど,様々なquditゲートについて論じる。
次に、deutsch-jozsaアルゴリズム、量子フーリエ変換、位相推定アルゴリズムを含むいくつかの代表的な量子アルゴリズムのquditバージョンを示す。
最後に、フォトニックプラットフォーム、鉄トラップ、核磁気共鳴などのクオード計算のための様々な物理的実現について論じる。
関連論文リスト
- Generalised Quantum Gates for Qudits and their Application in Quantum Fourier Transform [0.0]
任意のレベル$d$に対して普遍的に適用可能な、クディットゲートの新規な定式化を提案する。
量子ゲートの数学的枠組みを任意の次元に拡張することにより、任意の大きさの量子ビット上の量子計算の普遍的な集合を形成する明示的なゲート演算を導出する。
論文 参考訳(メタデータ) (2024-10-07T15:23:57Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Implementing multi-controlled X gates using the quantum Fourier transform [0.0]
本稿では,多くの複雑な量子ゲートの実装において,量子演算に基づくアプローチを効果的に利用する方法を示す。
回路の深さがわずか数個のアシラ量子ビットで大幅に低減されることを示す。
論文 参考訳(メタデータ) (2024-07-25T13:22:00Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Lightcone Bounds for Quantum Circuit Mapping via Uncomplexity [1.0360348400670518]
デバイス上で量子回路を実行するための最小のSWAPゲートカウントが、量子状態間の距離の最小化によって現れることを示す。
この研究は、量子回路の非複雑性を実際に関連する量子コンピューティングに初めて利用するものである。
論文 参考訳(メタデータ) (2024-02-01T10:32:05Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
我々は、量子アルゴリズムの効率的な実現に、マルチレベル量子システム(quditsとしても知られる)をどのように利用できるかを示すいくつかのアイデアをレビューする。
我々は,マルチキュービットゲートの分解を簡略化するためのキューディットの活用技術と,単一キューディットで複数のキュービットを符号化することで量子情報を圧縮する技術に焦点をあてる。
これらの理論スキームは、閉じ込められたイオン、中性原子、超伝導接合、量子光など、様々な性質の量子コンピューティングプラットフォームで実装することができる。
論文 参考訳(メタデータ) (2023-11-20T18:34:19Z) - Benchmarking Small-Scale Quantum Devices on Computing Graph Edit
Distance [52.77024349608834]
グラフ編集距離(GED: Graph Edit Distance)は、2つのグラフ間の(異なる)相似性の度合いを測定する。
本稿では、GED計算における2つの量子アプローチの比較研究について述べる。
論文 参考訳(メタデータ) (2021-11-19T12:35:26Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
マルチレベル量子システム(キューディット)を用いた量子アルゴリズムの効率的な実装手法を提案する。
提案手法は,Quditベースのプロセッサのパラメータに依存する標準量子ビット方式の回路のトランスパイレーションを用いる。
特定の普遍集合から取られた単一量子ゲートと2量子ゲートの列に量子回路を変換する明示的なスキームを提供する。
論文 参考訳(メタデータ) (2021-11-08T11:09:37Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
特定の演算を行うユニタリ行列が与えられた場合、等価な量子回路を得るのは非自明な作業である。
量子ウォーカーのコイン、トフォリゲート、フレドキンゲートの3つの問題が研究されている。
提案したアルゴリズムは量子回路の分解に効率的であることが証明され、汎用的なアプローチとして、利用可能な計算力によってのみ制限される。
論文 参考訳(メタデータ) (2021-06-06T13:15:25Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。