論文の概要: Point or Generate Dialogue State Tracker
- arxiv url: http://arxiv.org/abs/2008.03417v1
- Date: Sat, 8 Aug 2020 02:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 11:56:57.019458
- Title: Point or Generate Dialogue State Tracker
- Title(参考訳): 対話状態トラッカをポイントまたは生成する
- Authors: Song Xiaohui and Hu Songlin
- Abstract要約: 我々はPOGD(Point-Or-Generate Dialogue State Tracker)を提案する。
POGDは、ユーザの発話から明示的に表現されたスロット値を指摘し、スロット固有のコンテキストに基づいて暗黙的に表現されたスロットを生成する。
実験によると、POGDはWoZ 2.0とMultiWoZ 2.0の両方のデータセットで最先端の結果を得るだけでなく、目に見えない値と新しいスロットをうまく一般化している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue state tracking is a key part of a task-oriented dialogue system,
which estimates the user's goal at each turn of the dialogue. In this paper, we
propose the Point-Or-Generate Dialogue State Tracker (POGD). POGD solves the
dialogue state tracking task in two perspectives: 1) point out explicitly
expressed slot values from the user's utterance, and 2) generate implicitly
expressed ones based on slot-specific contexts. It also shares parameters
across all slots, which achieves knowledge sharing and gains scalability to
large-scale across-domain dialogues. Moreover, the training process of its
submodules is formulated as a multi-task learning procedure to further promote
its capability of generalization. Experiments show that POGD not only obtains
state-of-the-art results on both WoZ 2.0 and MultiWoZ 2.0 datasets but also has
good generalization on unseen values and new slots.
- Abstract(参考訳): 対話状態追跡はタスク指向対話システムの重要な部分であり、対話の各ターンにおけるユーザの目標を推定する。
本稿では,POGD(Point-Or-Generate Dialogue State Tracker)を提案する。
POGDは対話状態追跡タスクを2つの視点で解決する。
1)ユーザの発話から明示的に表現されたスロット値を指摘し、
2)スロット固有のコンテキストに基づいて暗黙的に表現されたものを生成する。
また、すべてのスロットにまたがるパラメータを共有し、知識共有を実現し、大規模なドメイン間対話に拡張性をもたらす。
さらに、そのサブモジュールのトレーニングプロセスは、その一般化能力をさらに促進するためのマルチタスク学習手順として定式化されている。
実験によると、POGDはWoZ 2.0とMultiWoZ 2.0の両方のデータセットで最先端の結果を得るだけでなく、目に見えない値と新しいスロットをうまく一般化している。
関連論文リスト
- FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - Zero-Shot Generalizable End-to-End Task-Oriented Dialog System using
Context Summarization and Domain Schema [2.7178968279054936]
タスク指向対話システムにおける最先端のアプローチは、条件付きシーケンス生成タスクとして問題を定式化する。
これは、新しいドメインまたはタスクごとにラベル付きトレーニングデータを必要とする。
本稿では,ZS-ToDという,Zero-Shotの汎用的なエンドツーエンドタスク指向ダイアログシステムについて紹介する。
論文 参考訳(メタデータ) (2023-03-28T18:56:31Z) - Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking [5.816391291790977]
対話状態追跡(DST)は、人間と機械の相互作用を追跡し、対話を管理するための状態表現を生成することを目的としている。
機械読解の最近の進歩は、対話状態追跡のための分類型と非分類型のスロットの両方を予測する。
我々は対話行為を定式化し、機械読解の最近の進歩を活用し、対話状態追跡のためのカテゴリー型と非カテゴリ型の両方のスロットを予測する。
論文 参考訳(メタデータ) (2022-08-04T05:18:30Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
ユニバーサル対話エンコーダとして双方向情報デカップリングネットワーク(BiDeN)を提案する。
BiDeNは過去と将来の両方のコンテキストを明示的に取り入れており、幅広い対話関連のタスクに一般化することができる。
異なる下流タスクのデータセットに対する実験結果は、我々のBiDeNの普遍性と有効性を示している。
論文 参考訳(メタデータ) (2022-04-18T03:51:46Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
我々は,ユーザ満足度を予測するために,対話行動の逐次的ダイナミクスを取り入れた新しいフレームワーク,すなわちUSDAを提案する。
USDAは、ユーザの満足度を予測するために、コンテンツと行動機能の連続的な遷移を対話に取り入れている。
4つのベンチマーク目標指向対話データセットによる実験結果から,提案手法はUSEの既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-02-07T02:50:07Z) - A Unified Pre-training Framework for Conversational AI [25.514505462661763]
PLATO-2は、簡略化された1対1のマッピング関係に適合するように、2段階のカリキュラム学習によって訓練される。
PLATO-2は3つのタスクで1位を獲得し、様々な対話システムのための統一されたフレームワークとしての有効性を検証する。
論文 参考訳(メタデータ) (2021-05-06T07:27:11Z) - Slot Self-Attentive Dialogue State Tracking [22.187581131353948]
スロット相関を自動的に学習できるスロット自己認識機構を提案する。
2つのマルチドメインタスク指向対話データセットの包括的な実験を行います。
論文 参考訳(メタデータ) (2021-01-22T22:48:51Z) - Modelling Hierarchical Structure between Dialogue Policy and Natural
Language Generator with Option Framework for Task-oriented Dialogue System [49.39150449455407]
HDNOは、特定の対話行為表現の設計を避けるために潜在対話行為を設計するためのオプションフレームワークである。
RL,LaRL,HDSAで学習した単語レベルE2Eモデルと比較して,マルチドメイン対話のデータセットであるMultiWoz 2.0とMultiWoz 2.1でHDNOをテストする。
論文 参考訳(メタデータ) (2020-06-11T20:55:28Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
本稿では, 対話状態の段階的追跡を, バックエンドデータの助けを借りて行うことを提案する。
実験の結果,MultiWOZ 2.1の連立信条精度は38.6%向上した。
論文 参考訳(メタデータ) (2020-05-27T02:05:33Z) - UniConv: A Unified Conversational Neural Architecture for Multi-domain
Task-oriented Dialogues [101.96097419995556]
ユニコンブ」はタスク指向対話におけるエンドツーエンド対話システムのための新しい統合型ニューラルネットワークである。
我々は、MultiWOZ2.1ベンチマークにおいて、対話状態追跡、コンテキスト・ツー・テキスト、エンドツーエンド設定の包括的な実験を行う。
論文 参考訳(メタデータ) (2020-04-29T16:28:22Z) - Hierarchical Context Enhanced Multi-Domain Dialogue System for
Multi-domain Task Completion [17.66372217976539]
本稿では,提案した階層型文脈拡張対話システム(HCEDS)について述べる。
本システムの主な動機は,複雑な対話を十分に理解するための階層的文脈の可能性を包括的に探求することである。
その結果,本システムは自動評価において第1位,人的評価では第2位となることがわかった。
論文 参考訳(メタデータ) (2020-03-03T05:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。