論文の概要: Learning Game-Theoretic Models of Multiagent Trajectories Using Implicit
Layers
- arxiv url: http://arxiv.org/abs/2008.07303v7
- Date: Fri, 18 Feb 2022 15:32:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 02:48:51.754264
- Title: Learning Game-Theoretic Models of Multiagent Trajectories Using Implicit
Layers
- Title(参考訳): 暗黙的層を用いたマルチエージェントトラジェクタのゲーム理論モデル学習
- Authors: Philipp Geiger, Christoph-Nikolas Straehle
- Abstract要約: 本稿では,ニューラルネットとゲーム理論的推論を併用したエンドツーエンドのトレーニング可能なアーキテクチャを提案する。
トラクタビリティのために、我々は新しいタイプの連続ポテンシャルゲームを導入し、アクション空間の平衡分離分割を導入する。
提案手法は,高速道路統合運転者の軌道を予測できる実世界の2つのデータセットと,簡易な意思決定伝達タスクで評価する。
- 参考スコア(独自算出の注目度): 9.594432031144716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For prediction of interacting agents' trajectories, we propose an end-to-end
trainable architecture that hybridizes neural nets with game-theoretic
reasoning, has interpretable intermediate representations, and transfers to
downstream decision making. It uses a net that reveals preferences from the
agents' past joint trajectory, and a differentiable implicit layer that maps
these preferences to local Nash equilibria, forming the modes of the predicted
future trajectory. Additionally, it learns an equilibrium refinement concept.
For tractability, we introduce a new class of continuous potential games and an
equilibrium-separating partition of the action space. We provide theoretical
results for explicit gradients and soundness. In experiments, we evaluate our
approach on two real-world data sets, where we predict highway driver merging
trajectories, and on a simple decision-making transfer task.
- Abstract(参考訳): エージェントの軌道予測のために,ニューラルネットとゲーム理論的推論をハイブリダイズし,解釈可能な中間表現を持ち,下流の意思決定に転送する,エンドツーエンドのトレーニング可能なアーキテクチャを提案する。
エージェントの過去の関節軌道からの選好を明らかにするネットと、これらの選好を局所的なナッシュ平衡にマッピングする識別可能な暗黙の層を使用して、予測される将来の軌跡のモードを形成する。
さらに、平衡リファインメントの概念も学ぶ。
トラクタビリティのために, 連続ポテンシャルゲームの新しいクラスと, 作用空間の平衡分離分割を導入する。
明瞭な勾配と音質に関する理論的結果を提供する。
実験では,2つの実世界のデータセットにおいて,高速道路ドライバのマージトラジェクタを予測し,簡易な意思決定伝達タスクを行う手法を評価した。
関連論文リスト
- Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
複雑な交通環境のナビゲーションはインテリジェントな技術の進歩によって大幅に向上し、自動車の正確な環境認識と軌道予測を可能にした。
既存の研究は、しばしばシナリオエージェントの合同推論を無視し、軌道予測モデルにおける解釈可能性に欠ける。
本研究では, 説明可能な拡散条件に基づく多モード軌道予測トラj-Explainerという, 説明可能性指向の軌道予測モデルが設計されている。
論文 参考訳(メタデータ) (2024-10-22T08:17:33Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
このようなパラダイムを模倣学習でどのように行うべきかを評価する。
本稿では,事前学習コーパスがマルチタスクのデモンストレーションから成り立つ環境について考察する。
逆動力学モデリングはこの設定に適していると主張する。
論文 参考訳(メタデータ) (2023-05-26T14:40:46Z) - A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
深層学習(DL)と強化学習(RL)の階層的ハイブリッドフレームワークを提案する。
DLの段階では、トラフィックシーンは、トランスフォーマースタイルのGNNが異種相互作用を符号化するために採用される複数の中間スケールの異種グラフに分割される。
RLの段階では、DLの段階で予測される重要な将来点を利用して、交通シーンを局所的なサブシーンに分割する。
論文 参考訳(メタデータ) (2023-03-22T02:47:42Z) - End-to-End Trajectory Distribution Prediction Based on Occupancy Grid
Maps [29.67295706224478]
本稿では,実世界における移動エージェントの将来の軌跡分布を予測することを目的としている。
我々は、接地構造分布に対する明示的かつシーン順応的な近似として、占有格子マップを用いて対称的クロスエントロピーで分布を学習する。
実験では,Stanford Drone データセットとIntersection Drone データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-31T09:24:32Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
運動不確定性拡散(MID)の逆過程として軌道予測タスクを定式化する新しい枠組みを提案する。
我々は,履歴行動情報と社会的相互作用を状態埋め込みとしてエンコードし,トランジトリの時間的依存性を捉えるためにトランスフォーマーに基づく拡散モデルを考案する。
スタンフォード・ドローンやETH/UCYデータセットなど,人間の軌道予測ベンチマーク実験により,本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-03-25T16:59:08Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
本稿では,トランジタブルグラフニューラルネットワーク(Transferable Graph Neural Network, T-GNN)フレームワークを提案する。
具体的には、ドメイン固有知識が減少する構造運動知識を探索するために、ドメイン不変GNNを提案する。
さらに,注目に基づく適応的知識学習モジュールを提案し,知識伝達のための詳細な個別レベルの特徴表現について検討した。
論文 参考訳(メタデータ) (2022-03-09T21:08:47Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。