Transport in boundary-driven quantum spin systems: One-way street for
the energy current
- URL: http://arxiv.org/abs/2008.09447v1
- Date: Fri, 21 Aug 2020 12:33:49 GMT
- Title: Transport in boundary-driven quantum spin systems: One-way street for
the energy current
- Authors: Deborah Oliveira and Emmanuel Pereira and Humberto C. F. Lemos
- Abstract summary: We study transport properties in boundary-driven asymmetric quantum spin chains given by $mathitXXZ$ and $mathitXXX$ Heisenberg models.
Our results, involving nontrivial properties of the energy flow, shall interest researchers working on the control and manipulation of quantum transport.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study transport properties in boundary-driven asymmetric quantum spin
chains given by $\mathit{XXZ}$ and $\mathit{XXX}$ Heisenberg models. Our
approach exploits symmetry transformations in the Lindblad master equation
associated to the dynamics of the systems. We describe the mathematical steps
to build the unitary transformations related to the symmetry properties. For
general target polarizations, we show the occurrence of the one-way street
phenomenon for the energy current, namely, the energy current does not change
in magnitude and direction as we invert the baths at the boundaries. We also
analyze the spin current in some situations, and we prove the uniqueness of the
steady state for all investigated cases. Our results, involving nontrivial
properties of the energy flow, shall interest researchers working on the
control and manipulation of quantum transport.
Related papers
- Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully controllable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
Our work paves the way for analog molecule simulators based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Nonreciprocal synchronization of active quantum spins [0.0]
We present a model of two species of quantum spins that interact in an antagonistic nonreciprocal way.
We show that nonreciprocal interactions deeply affect their synchronization dynamics.
Our work opens a new avenue to explore nonreciprocal interactions in active quantum matter.
arXiv Detail & Related papers (2024-06-05T15:12:34Z) - Quantum many-body spin ratchets [0.0]
We show that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility.
We also show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
arXiv Detail & Related papers (2024-06-03T17:51:36Z) - Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices [0.0]
Transport measurements are fundamental for understanding condensed matter phenomena, from superconductivity to the fractional quantum Hall effect.
Here we demonstrate the measurement of in-situ particle current in a superconducting circuit lattice and apply it to study transport in both coherent and bath-coupled lattices.
arXiv Detail & Related papers (2024-03-18T17:08:04Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - One-way street for the energy current: A ubiquitous phenomenon in
boundary-driven quantum spin chains [0.0]
We investigate asymmetrical quantum spin chains described by boundary-driven $mathitXXZ$ and $mathitXXX$ Heisenberg models.
We show the occurrence of an effect related to (but stronger than) energy rectification, namely, the one-way street phenomenon.
arXiv Detail & Related papers (2020-02-04T18:41:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.